Example #1
0
def completed_rundir(configuration, tmpdir_factory):

    tendency_dataset_path = tmpdir_factory.mktemp("tendencies")

    if configuration == ConfigEnum.predictor:
        model = get_mock_predictor()
        model_path = str(tmpdir_factory.mktemp("model"))
        fv3fit.dump(model, str(model_path))
        config = get_ml_config(model_path)
    elif configuration == ConfigEnum.nudging:
        tendencies = _tendency_dataset()
        tendencies.to_zarr(
            str(tendency_dataset_path.join("ds.zarr")), consolidated=True
        )
        config = get_nudging_config(str(tendency_dataset_path.join("ds.zarr")))
    elif configuration == ConfigEnum.microphys_emulation:
        model_path = str(tmpdir_factory.mktemp("model").join("model.tf"))
        model = create_emulation_model()
        model.save(model_path)
        config = get_emulation_config(model_path)
    else:
        raise NotImplementedError()

    rundir = tmpdir_factory.mktemp("rundir").join("subdir")
    run_native(config, str(rundir))
    return rundir
Example #2
0
def test_ml_stepper_state_update(state):
    ml_stepper = PureMLStepper(
        get_mock_predictor("state_and_tendency"), timestep=900, hydrostatic=False
    )
    (tendencies, diagnostics, states) = ml_stepper(None, state)
    assert set(states) == {"total_sky_downward_shortwave_flux_at_surface"}
    assert set(tendencies) == {"dQ1"}
Example #3
0
def test_adapter_regression(state, regtest, tmpdir_factory):
    model_path = str(tmpdir_factory.mktemp("model"))
    mock = get_mock_predictor(dQ1_tendency=1 / 86400)
    fv3fit.dump(mock, model_path)

    adapted_model = Adapter(
        Config(model_path, {
            "air_temperature": "dQ1",
            "specific_humidity": "dQ2"
        }), 900)
    transform = StepTransformer(
        adapted_model,
        MockDerivedState(state),
        "machine_learning",
        diagnostic_variables={
            "tendency_of_specific_humidity_due_to_machine_learning",
            "tendency_of_air_temperature_due_to_machine_learning",
            "tendency_of_internal_energy_due_to_machine_learning",
        },
        timestep=900,
    )

    def add_one_to_temperature():
        state["air_temperature"] += 1
        return {"some_diag": state["specific_humidity"]}

    out = transform(add_one_to_temperature)()

    # ensure tendency of internal energy is non-zero somewhere (GH#1433)
    max = abs(out["tendency_of_internal_energy_due_to_machine_learning"]).max()
    assert max.values.item() > 1e-6

    # sort to make the check deterministic
    regression_state(out, regtest)
Example #4
0
def test_mock_predictor_checksum(output_type, state, regtest):
    mock_model = get_mock_predictor(output_type)
    predicted = mock_model.predict_columnwise(state, feature_dim="z")
    test_state_regression(predicted, regtest)
Example #5
0
def ml_stepper(model_output_type):
    timestep = 900
    mock_model = get_mock_predictor(model_output_type)
    ml_stepper = PureMLStepper(mock_model, timestep, hydrostatic=False)
    return ml_stepper