Example #1
0
def reconstruct(epoch):
    print('reconstruct')
    fgen.eval()
    n = 16
    np.random.shuffle(test_index)
    img, _ = get_batch(test_data, test_index[:n])
    img = preprocess(img.to(device), n_bits)

    z, _ = fgen.encode(img)
    img_recon, _ = fgen.decode(z)

    abs_err = img_recon.add(img * -1).abs()
    print('Err: {:.4f}, {:.4f}'.format(abs_err.max().item(), abs_err.mean().item()))

    img = postprocess(img, n_bits)
    img_recon = postprocess(img_recon, n_bits)
    comparison = torch.cat([img, img_recon], dim=0).cpu()
    reorder_index = torch.from_numpy(np.array([[i + j * n for j in range(2)] for i in range(n)])).view(-1)
    comparison = comparison[reorder_index]
    image_file = 'reconstruct{}.png'.format(epoch)
    save_image(comparison, os.path.join(result_path, image_file), nrow=16)
Example #2
0
    params = json.load(open(args.config, 'r'))
    json.dump(params, open(os.path.join(model_path, 'config.json'), 'w'), indent=2)
    if dequant == 'uniform':
        fgen = FlowGenModel.from_params(params).to(device)
    elif dequant == 'variational':
        fgen = VDeQuantFlowGenModel.from_params(params).to(device)
    else:
        raise ValueError('unknown dequantization method: %s' % dequant)
    # initialize
    fgen.eval()
    init_batch_size = 512
    init_iter = 1
    print('init: {} instances with {} iterations'.format(init_batch_size, init_iter))
    for _ in range(init_iter):
        init_index = np.random.choice(train_index, init_batch_size, replace=False)
        init_data, _ = get_batch(train_data, init_index)
        init_data = preprocess(init_data.to(device), n_bits)
        fgen.init(init_data, init_scale=1.0)
    # create shadow mae for ema
    # params = json.load(open(args.config, 'r'))
    # fgen_shadow = FlowGenModel.from_params(params).to(device)
    # exponentialMovingAverage(fgen, fgen_shadow, polyak_decay, init=True)

    fgen.to_device(device)
    optimizer = get_optimizer(lr, fgen.parameters())
    lmbda = lambda step: step / float(warmups) if step < warmups else step_decay ** (step - warmups)
    scheduler = optim.lr_scheduler.LambdaLR(optimizer, lmbda)
    scheduler.step()

    start_epoch = 1
    patient = 0