def main(args):
    # get configuration
    cfg_file = osp.join(args.example_config_path, args.primitive) + ".yaml"
    cfg = get_cfg_defaults()
    cfg.merge_from_file(cfg_file)
    cfg.freeze()

    rospy.init_node('EvalSubgoal')
    signal.signal(signal.SIGINT, signal_handler)

    # setup data saving paths
    data_seed = args.np_seed
    primitive_name = args.primitive

    problems_file = '/root/catkin_ws/src/primitives/data/planning/test_problems_0/demo_0.pkl'
    with open(problems_file, 'rb') as f:
        problems_data = pickle.load(f)

    prob_inds = np.arange(len(problems_data), dtype=np.int64).tolist()
    data_inds = np.arange(len(problems_data[0]['problems']),
                          dtype=np.int64).tolist()

    pickle_path = osp.join(args.data_dir, primitive_name, args.experiment_name)

    if args.save_data:
        suf_i = 0
        original_pickle_path = pickle_path
        # while True:
        #     if osp.exists(pickle_path):
        #         suffix = '_%d' % suf_i
        #         pickle_path = original_pickle_path + suffix
        #         suf_i += 1
        #         data_seed += 1
        #     else:
        #         os.makedirs(pickle_path)
        #         break

        if not osp.exists(pickle_path):
            os.makedirs(pickle_path)

    np.random.seed(data_seed)

    # initialize airobot and modify dynamics
    yumi_ar = Robot('yumi_palms',
                    pb=True,
                    pb_cfg={
                        'gui': args.visualize,
                        'opengl_render': False
                    },
                    arm_cfg={
                        'self_collision': False,
                        'seed': data_seed
                    })

    r_gel_id = cfg.RIGHT_GEL_ID
    l_gel_id = cfg.LEFT_GEL_ID
    table_id = cfg.TABLE_ID

    alpha = cfg.ALPHA
    K = cfg.GEL_CONTACT_STIFFNESS
    restitution = cfg.GEL_RESTITUION

    p.changeDynamics(yumi_ar.arm.robot_id,
                     r_gel_id,
                     restitution=restitution,
                     contactStiffness=K,
                     contactDamping=alpha * K,
                     rollingFriction=args.rolling,
                     lateralFriction=0.5)

    p.changeDynamics(yumi_ar.arm.robot_id,
                     l_gel_id,
                     restitution=restitution,
                     contactStiffness=K,
                     contactDamping=alpha * K,
                     rollingFriction=args.rolling,
                     lateralFriction=0.5)

    # initialize PyBullet + MoveIt! + ROS yumi interface
    yumi_gs = YumiCamsGS(yumi_ar,
                         cfg,
                         exec_thread=False,
                         sim_step_repeat=args.sim_step_repeat)

    yumi_ar.arm.go_home(ignore_physics=True)

    # initialize object sampler
    cuboid_sampler = CuboidSampler(osp.join(
        os.environ['CODE_BASE'],
        'catkin_ws/src/config/descriptions/meshes/objects/cuboids/nominal_cuboid.stl'
    ),
                                   pb_client=yumi_ar.pb_client)
    cuboid_fname_template = osp.join(
        os.environ['CODE_BASE'],
        'catkin_ws/src/config/descriptions/meshes/objects/cuboids/')

    cuboid_manager = MultiBlockManager(cuboid_fname_template,
                                       cuboid_sampler,
                                       robot_id=yumi_ar.arm.robot_id,
                                       table_id=table_id,
                                       r_gel_id=r_gel_id,
                                       l_gel_id=l_gel_id)

    if args.multi:
        # cuboid_fname = cuboid_manager.get_cuboid_fname()
        # cuboid_fname = str(osp.join(
        #     '/root/catkin_ws/src/config/descriptions/meshes/objects/cuboids',
        #     problems_data[0]['object_name']))

        # get object name
        k = 0
        prob_inds = copy.deepcopy(
            list(np.arange(len(problems_data), dtype=np.int64)))
        shuffle(prob_inds)
        while True:
            if len(prob_inds) == 0:
                print('Done with test problems!')
                return
            prob_ind = prob_inds.pop()
            obj_name = problems_data[prob_ind]['object_name'].split('.stl')[0]
            if osp.exists(osp.join(pickle_path, obj_name)):
                continue
            os.makedirs(osp.join(pickle_path, obj_name))
            break
        cuboid_fname = str(
            osp.join(
                '/root/catkin_ws/src/config/descriptions/meshes/objects/cuboids',
                obj_name + '.stl'))

    else:
        cuboid_fname = args.config_package_path + 'descriptions/meshes/objects/' + \
            args.object_name + '.stl'
    mesh_file = cuboid_fname
    print("Cuboid file: " + cuboid_fname)

    if args.goal_viz:
        goal_visualization = True
    else:
        goal_visualization = False

    obj_id, sphere_ids, mesh, goal_obj_id = \
        cuboid_sampler.sample_cuboid_pybullet(
            cuboid_fname,
            goal=goal_visualization,
            keypoints=False)

    cuboid_manager.filter_collisions(obj_id, goal_obj_id)

    p.changeDynamics(obj_id, -1, lateralFriction=1.0)

    goal_faces = [0, 1, 2, 3, 4, 5]
    # shuffle(goal_faces)
    goal_face = goal_faces[0]

    # initialize primitive args samplers
    exp_single = SingleArmPrimitives(cfg, yumi_ar.pb_client.get_client_id(),
                                     obj_id, cuboid_fname)
    k = 0
    while True:
        k += 1
        if k > 10:
            print('FAILED TO BUILD GRASPING GRAPH')
            return
        try:
            exp_double = DualArmPrimitives(cfg,
                                           yumi_ar.pb_client.get_client_id(),
                                           obj_id,
                                           cuboid_fname,
                                           goal_face=goal_face)
            break
        except ValueError as e:
            print(e)
            yumi_ar.pb_client.remove_body(obj_id)
            if goal_visualization:
                yumi_ar.pb_client.remove_body(goal_obj_id)
            cuboid_fname = cuboid_manager.get_cuboid_fname()
            print("Cuboid file: " + cuboid_fname)

            obj_id, sphere_ids, mesh, goal_obj_id = \
                cuboid_sampler.sample_cuboid_pybullet(
                    cuboid_fname,
                    goal=goal_visualization,
                    keypoints=False)

            cuboid_manager.filter_collisions(obj_id, goal_obj_id)

            p.changeDynamics(obj_id, -1, lateralFriction=1.0)
    if primitive_name == 'grasp':
        exp_running = exp_double
    else:
        exp_running = exp_single

    # initialize macro action interface
    action_planner = ClosedLoopMacroActions(cfg,
                                            yumi_gs,
                                            obj_id,
                                            yumi_ar.pb_client.get_client_id(),
                                            args.config_package_path,
                                            replan=args.replan,
                                            object_mesh_file=mesh_file)

    if goal_visualization:
        trans_box_lock = threading.RLock()
        goal_viz = GoalVisual(trans_box_lock, goal_obj_id,
                              action_planner.pb_client, cfg.OBJECT_POSE_3)

    action_planner.update_object(obj_id, mesh_file)
    exp_single.initialize_object(obj_id, cuboid_fname)

    # prep save info
    dynamics_info = {}
    dynamics_info['contactDamping'] = alpha * K
    dynamics_info['contactStiffness'] = K
    dynamics_info['rollingFriction'] = args.rolling
    dynamics_info['restitution'] = restitution

    data = {}
    data['saved_data'] = []
    data['metadata'] = {}
    data['metadata']['mesh_file'] = mesh_file
    data['metadata']['cfg'] = cfg
    data['metadata']['dynamics'] = dynamics_info
    data['metadata']['cam_cfg'] = yumi_gs.cam_setup_cfg
    data['metadata']['step_repeat'] = args.sim_step_repeat
    data['metadata']['seed'] = data_seed
    data['metadata']['seed_original'] = args.np_seed

    metadata = data['metadata']

    data_manager = DataManager(pickle_path)
    # pred_dir = osp.join(os.environ['CODE_BASE'], cfg.PREDICTION_DIR)
    # obs_dir = osp.join(os.environ['CODE_BASE'], cfg.OBSERVATION_DIR)
    pred_dir = cfg.PREDICTION_DIR
    obs_dir = cfg.OBSERVATION_DIR
    if not osp.exists(pred_dir):
        os.makedirs(pred_dir)
    if not osp.exists(obs_dir):
        os.makedirs(obs_dir)

    if args.save_data:
        with open(osp.join(pickle_path, 'metadata.pkl'), 'wb') as mdata_f:
            pickle.dump(metadata, mdata_f)

    # prep visualization tools
    palm_mesh_file = osp.join(os.environ['CODE_BASE'], cfg.PALM_MESH_FILE)
    table_mesh_file = osp.join(os.environ['CODE_BASE'], cfg.TABLE_MESH_FILE)
    viz_palms = PalmVis(palm_mesh_file, table_mesh_file, cfg)
    viz_pcd = PCDVis()

    # pull_sampler = PullSamplerBasic()
    pull_sampler = PullSamplerVAEPubSub(obs_dir=obs_dir, pred_dir=pred_dir)
    grasp_sampler = GraspSamplerVAEPubSub(default_target=None,
                                          obs_dir=obs_dir,
                                          pred_dir=pred_dir,
                                          pointnet=args.pointnet)
    # grasp_sampler = GraspSamplerTransVAEPubSub(
    #     None,
    #     obs_dir,
    #     pred_dir,
    #     pointnet=args.pointnet
    # )
    # grasp_sampler = GraspSamplerBasic(
    #     default_target=None
    # )
    parent, child = Pipe(duplex=True)
    work_queue, result_queue = Queue(), Queue()

    experiment_manager = GraspEvalManager(yumi_gs,
                                          yumi_ar.pb_client.get_client_id(),
                                          pickle_path, args.exp_name, parent,
                                          child, work_queue, result_queue, cfg)

    experiment_manager.set_object_id(obj_id, cuboid_fname)

    # begin runs
    total_trials = 0
    total_executions = 0
    total_face_success = 0

    # for _ in range(args.num_blocks):
    for problem_ind in range(1, len(problems_data)):
        for goal_face in goal_faces:
            try:
                exp_double.initialize_object(obj_id, cuboid_fname, goal_face)
            except ValueError as e:
                print('Goal face: ' + str(goal_face), e)
                continue
            for _ in range(args.num_obj_samples):
                yumi_ar.arm.go_home(ignore_physics=True)
                obj_data = experiment_manager.get_object_data()
                if obj_data['trials'] > 0:
                    kvs = {}
                    kvs['trials'] = obj_data['trials']
                    kvs['grasp_success'] = obj_data[
                        'grasp_success'] * 100.0 / obj_data['trials']
                    kvs['mp_success'] = obj_data[
                        'mp_success'] * 100.0 / obj_data['trials']
                    kvs['face_success'] = obj_data[
                        'face_success'] * 100.0 / obj_data['trials']
                    kvs['pos_err'] = np.mean(obj_data['final_pos_error'])
                    kvs['ori_err'] = np.mean(obj_data['final_ori_error'])
                    string = ''

                    for k, v in kvs.items():
                        string += "%s: %.3f, " % (k, v)
                    print(string)

                total_trials += 1
                if primitive_name == 'grasp':
                    start_face = exp_double.get_valid_ind()
                    if start_face is None:
                        print('Could not find valid start face')
                        continue
                    plan_args = exp_double.get_random_primitive_args(
                        ind=start_face, random_goal=True, execute=True)
                elif primitive_name == 'pull':
                    plan_args = exp_single.get_random_primitive_args(
                        ind=goal_face, random_goal=True, execute=True)

                start_pose = plan_args['object_pose1_world']
                goal_pose = plan_args['object_pose2_world']

                if goal_visualization:
                    goal_viz.update_goal_state(
                        util.pose_stamped2list(goal_pose))
                    goal_viz.hide_goal_obj()
                attempts = 0

                # embed()
                # yumi_ar.pb_client.remove_body(obj_id)
                # start_pos = [0.4, 0.0, 0.1]
                # un_norm_ori = np.random.rand(4)
                # start_ori = un_norm_ori/(np.linalg.norm(un_norm_ori))
                # start_pose = util.list2pose_stamped(list(start_pos) + list(start_ori))
                # bandu_names = [
                #     '/root/catkin_ws/src/config/descriptions/bandu/Bandu Block/Bandu Block.urdf',
                #     '/root/catkin_ws/src/config/descriptions/bandu/Big Ring/Big Ring.urdf',
                #     '/root/catkin_ws/src/config/descriptions/bandu/Double Wedge/Double Wedge.urdf',
                #     '/root/catkin_ws/src/config/descriptions/bandu/Egg/Egg.urdf',
                #     '/root/catkin_ws/src/config/descriptions/bandu/Knight Shape/Knight Shape.urdf',
                #     '/root/catkin_ws/src/config/descriptions/bandu/Pencil/Pencil.urdf',
                #     '/root/catkin_ws/src/config/descriptions/bandu/Skewed Rectangular Prism/Skewed Rectangular Prism.urdf',
                #     '/root/catkin_ws/src/config/descriptions/bandu/Skewed Triangular Prism/Skewed Triangular Prism.urdf',
                #     '/root/catkin_ws/src/config/descriptions/bandu/Skewed Wedge/Skewed Wedge.urdf',
                # ]
                # obj_id = yumi_ar.pb_client.load_urdf(
                #     bandu_names[0],
                #     start_pos,
                #     start_ori
                # )

                # pcd1 = trimesh.PointCloud(pointcloud_pts)
                # pcd2 = trimesh.PointCloud(pointcloud_pts[np.where(start_state.pointcloud_mask)[0], :])
                # pcd1.colors = [255, 0, 0, 255]
                # pcd2.colors = [0, 0, 255, 255]
                # scene_full = trimesh.Scene([pcd1, pcd2])
                # scene1 = trimesh.Scene([pcd1])
                # scene2 = trimesh.Scene([pcd2])
                # scene_full.show()

                # embed()
                while True:
                    # if attempts > cfg.ATTEMPT_MAX:
                    if attempts > 4:
                        experiment_manager.set_mp_success(False, attempts)
                        experiment_manager.end_trial(None, False)
                        break
                    # print('attempts: ' + str(attempts))

                    attempts += 1
                    time.sleep(0.1)
                    yumi_ar.arm.go_home(ignore_physics=True)
                    if goal_visualization:
                        goal_viz.update_goal_state(
                            util.pose_stamped2list(goal_pose))
                        goal_viz.hide_goal_obj()
                    time.sleep(1.0)

                    p.resetBasePositionAndOrientation(
                        obj_id,
                        util.pose_stamped2list(start_pose)[:3],
                        util.pose_stamped2list(start_pose)[3:])
                    time.sleep(1.0)

                    obs, pcd = yumi_gs.get_observation(
                        obj_id=obj_id,
                        robot_table_id=(yumi_ar.arm.robot_id, table_id))

                    goal_pose_global = util.pose_stamped2list(goal_pose)
                    goal_mat_global = util.matrix_from_pose(goal_pose)

                    start_mat = util.matrix_from_pose(start_pose)
                    T_mat_global = np.matmul(goal_mat_global,
                                             np.linalg.inv(start_mat))

                    transformation_global = util.pose_stamped2np(
                        util.pose_from_matrix(T_mat_global))
                    # model takes in observation, and predicts:
                    pointcloud_pts = np.asarray(obs['down_pcd_pts'][:100, :],
                                                dtype=np.float32)
                    pointcloud_pts_full = np.asarray(np.concatenate(
                        obs['pcd_pts']),
                                                     dtype=np.float32)
                    table_pts_full = np.concatenate(obs['table_pcd_pts'],
                                                    axis=0)

                    grasp_sampler.update_default_target(
                        table_pts_full[::500, :])

                    # sample from model
                    start_state = PointCloudNode()
                    start_state.set_pointcloud(pcd=pointcloud_pts,
                                               pcd_full=pointcloud_pts_full)
                    if primitive_name == 'grasp':
                        # prediction = grasp_sampler.sample(start_state.pointcloud)
                        prediction = grasp_sampler.sample(
                            state=start_state.pointcloud,
                            state_full=start_state.pointcloud_full)
                    elif primitive_name == 'pull':
                        prediction = pull_sampler.sample(
                            start_state.pointcloud)
                    start_state.pointcloud_mask = prediction['mask']

                    new_state = PointCloudNode()
                    new_state.init_state(start_state,
                                         prediction['transformation'])
                    correction = False
                    if primitive_name == 'grasp':
                        correction = True
                    new_state.init_palms(
                        prediction['palms'],
                        correction=correction,
                        prev_pointcloud=start_state.pointcloud_full)

                    trans_execute = util.pose_from_matrix(
                        new_state.transformation)
                    if args.final_subgoal:
                        trans_execute = util.pose_from_matrix(T_mat_global)

                    if primitive_name == 'grasp':
                        local_plan = grasp_planning_wf(
                            util.list2pose_stamped(new_state.palms[7:]),
                            util.list2pose_stamped(new_state.palms[:7]),
                            trans_execute)
                    elif primitive_name == 'pull':
                        local_plan = pulling_planning_wf(
                            util.list2pose_stamped(new_state.palms[:7]),
                            util.list2pose_stamped(new_state.palms[:7]),
                            trans_execute)

                    if args.rviz_viz:
                        import simulation
                        for i in range(10):
                            simulation.visualize_object(
                                start_pose,
                                filepath=
                                "package://config/descriptions/meshes/objects/cuboids/"
                                + cuboid_fname.split('objects/cuboids')[1],
                                name="/object_initial",
                                color=(1., 0., 0., 1.),
                                frame_id="/yumi_body",
                                scale=(1., 1., 1.))
                            simulation.visualize_object(
                                goal_pose,
                                filepath=
                                "package://config/descriptions/meshes/objects/cuboids/"
                                + cuboid_fname.split('objects/cuboids')[1],
                                name="/object_final",
                                color=(0., 0., 1., 1.),
                                frame_id="/yumi_body",
                                scale=(1., 1., 1.))
                            rospy.sleep(.1)
                        simulation.simulate(
                            local_plan,
                            cuboid_fname.split('objects/cuboids')[1])
                        embed()
                    if args.plotly_viz:
                        plot_data = {}
                        plot_data['start'] = pointcloud_pts
                        plot_data[
                            'object_mask_down'] = start_state.pointcloud_mask

                        fig, _ = viz_pcd.plot_pointcloud(plot_data,
                                                         downsampled=True)
                        fig.show()
                        embed()
                    # embed()
                    # trans_list = []
                    # for i in range(50):
                    #     pred = pull_sampler.sample(start_state.pointcloud)
                    #     trans_list.append(util.pose_stamped2np(util.pose_from_matrix(pred['transformation'])))

                    if args.trimesh_viz:
                        viz_data = {}
                        viz_data[
                            'contact_world_frame_right'] = new_state.palms_raw[:
                                                                               7]
                        viz_data[
                            'contact_world_frame_left'] = new_state.palms_raw[
                                7:]
                        # viz_data['contact_world_frame_left'] = new_state.palms_raw[:7]
                        viz_data['start_vis'] = util.pose_stamped2np(
                            start_pose)
                        viz_data['transformation'] = util.pose_stamped2np(
                            util.pose_from_matrix(
                                prediction['transformation']))
                        # viz_data['transformation'] = np.asarray(trans_list).squeeze()
                        viz_data['mesh_file'] = cuboid_fname
                        viz_data['object_pointcloud'] = pointcloud_pts_full
                        viz_data['start'] = pointcloud_pts
                        # viz_data['start'] = pointcloud_pts_full
                        viz_data['object_mask'] = prediction['mask']
                        embed()

                        scene = viz_palms.vis_palms(viz_data,
                                                    world=True,
                                                    corr=False,
                                                    full_path=True,
                                                    goal_number=1)
                        scene_pcd = viz_palms.vis_palms_pcd(viz_data,
                                                            world=True,
                                                            corr=False,
                                                            full_path=True,
                                                            show_mask=True,
                                                            goal_number=1)
                        scene_pcd.show()
                        # scene.show()
                        embed()

                    real_start_pos = p.getBasePositionAndOrientation(obj_id)[0]
                    real_start_ori = p.getBasePositionAndOrientation(obj_id)[1]
                    real_start_pose = list(real_start_pos) + list(
                        real_start_ori)
                    real_start_mat = util.matrix_from_pose(
                        util.list2pose_stamped(real_start_pose))

                    des_goal_pose = util.transform_pose(
                        util.list2pose_stamped(real_start_pose),
                        util.pose_from_matrix(prediction['transformation']))

                    if goal_visualization:
                        goal_viz.update_goal_state(
                            util.pose_stamped2list(goal_pose))
                        goal_viz.show_goal_obj()

                    # create trial data
                    trial_data = {}
                    trial_data['start_pcd'] = pointcloud_pts_full
                    trial_data['start_pcd_down'] = pointcloud_pts
                    trial_data['start_pcd_mask'] = start_state.pointcloud_mask
                    trial_data['obj_fname'] = cuboid_fname
                    trial_data['start_pose'] = np.asarray(real_start_pose)
                    trial_data['goal_pose'] = util.pose_stamped2np(
                        des_goal_pose)
                    trial_data['goal_pose_global'] = np.asarray(
                        goal_pose_global)
                    trial_data['table_pcd'] = table_pts_full[::500, :]
                    trial_data['trans_des'] = util.pose_stamped2np(
                        util.pose_from_matrix(prediction['transformation']))
                    trial_data['trans_des_global'] = transformation_global

                    # experiment_manager.start_trial()
                    action_planner.active_arm = 'right'
                    action_planner.inactive_arm = 'left'

                    if primitive_name == 'grasp':
                        # try to execute the action
                        yumi_ar.arm.set_jpos([
                            0.9936, -2.1848, -0.9915, 0.8458, 3.7618, 1.5486,
                            0.1127, -1.0777, -2.1187, 0.995, 1.002, -3.6834,
                            1.8132, 2.6405
                        ],
                                             ignore_physics=True)
                        grasp_success = False
                        try:
                            for k, subplan in enumerate(local_plan):
                                time.sleep(1.0)
                                action_planner.playback_dual_arm(
                                    'grasp', subplan, k)
                                if k > 0 and experiment_manager.still_grasping(
                                ):
                                    grasp_success = True

                            real_final_pos = p.getBasePositionAndOrientation(
                                obj_id)[0]
                            real_final_ori = p.getBasePositionAndOrientation(
                                obj_id)[1]
                            real_final_pose = list(real_final_pos) + list(
                                real_final_ori)
                            real_final_mat = util.matrix_from_pose(
                                util.list2pose_stamped(real_final_pose))
                            real_T_mat = np.matmul(
                                real_final_mat, np.linalg.inv(real_start_mat))
                            real_T_pose = util.pose_stamped2np(
                                util.pose_from_matrix(real_T_mat))

                            trial_data['trans_executed'] = real_T_mat
                            trial_data['final_pose'] = real_final_pose
                            experiment_manager.set_mp_success(True, attempts)
                            experiment_manager.end_trial(
                                trial_data, grasp_success)
                            # embed()
                        except ValueError as e:
                            # print('Value Error: ', e)
                            continue
                    elif primitive_name == 'pull':
                        try:
                            yumi_ar.arm.set_jpos(cfg.RIGHT_INIT +
                                                 cfg.LEFT_INIT,
                                                 ignore_physics=True)
                            time.sleep(0.5)
                            action_planner.playback_single_arm(
                                'pull', local_plan[0])
                            time.sleep(0.5)
                            action_planner.single_arm_retract()
                        except ValueError as e:
                            continue

                    time.sleep(3.0)
                    yumi_ar.arm.go_home(ignore_physics=True)
                    break
        embed()

        obj_data = experiment_manager.get_object_data()
        # obj_name = problems_data[problem_ind]['object_name'].split('.stl')[0]
        obj_data_fname = osp.join(pickle_path, obj_name,
                                  obj_name + '_eval_data.pkl')
        # print('Object data: ')
        # for key in obj_data.keys():
        #     print(key, obj_data[key])
        if args.save_data:
            print('Saving to: ' + str(obj_data_fname))
            with open(obj_data_fname, 'wb') as f:
                pickle.dump(obj_data, f)

        yumi_ar.pb_client.remove_body(obj_id)
        if goal_visualization:
            yumi_ar.pb_client.remove_body(goal_obj_id)

        # cuboid_fname = cuboid_manager.get_cuboid_fname()
        # cuboid_fname = str(osp.join(
        #     '/root/catkin_ws/src/config/descriptions/meshes/objects/cuboids',
        #     problems_data[problem_ind]['object_name']))
        while True:
            if len(prob_inds) == 0:
                print('Done with test problems!')
                return
            prob_ind = prob_inds.pop()
            obj_name = problems_data[prob_ind]['object_name'].split('.stl')[0]
            if osp.exists(osp.join(pickle_path, obj_name)):
                continue
            os.makedirs(osp.join(pickle_path, obj_name))
            break
        cuboid_fname = str(
            osp.join(
                '/root/catkin_ws/src/config/descriptions/meshes/objects/cuboids',
                obj_name + '.stl'))

        obj_id, sphere_ids, mesh, goal_obj_id = \
            cuboid_sampler.sample_cuboid_pybullet(
                cuboid_fname,
                goal=goal_visualization,
                keypoints=False)

        cuboid_manager.filter_collisions(obj_id, goal_obj_id)

        p.changeDynamics(obj_id, -1, lateralFriction=1.0)

        action_planner.update_object(obj_id, cuboid_fname)
        exp_single.initialize_object(obj_id, cuboid_fname)
        experiment_manager.set_object_id(obj_id, cuboid_fname)

        if goal_visualization:
            goal_viz.update_goal_obj(goal_obj_id)
Example #2
0
def main(args):
    cfg_file = osp.join(args.example_config_path, args.primitive) + ".yaml"
    cfg = get_cfg_defaults()
    cfg.merge_from_file(cfg_file)
    cfg.freeze()

    rospy.init_node('EvalMultiStep')
    signal.signal(signal.SIGINT, signal_handler)

    data_seed = args.np_seed
    primitive_name = args.primitive

    pickle_path = osp.join(args.data_dir, primitive_name, args.experiment_name)

    if args.save_data:
        suf_i = 0
        original_pickle_path = pickle_path
        # while True:
        #     if osp.exists(pickle_path):
        #         suffix = '_%d' % suf_i
        #         pickle_path = original_pickle_path + suffix
        #         suf_i += 1
        #         data_seed += 1
        #     else:
        #         os.makedirs(pickle_path)
        #         break

        if not osp.exists(pickle_path):
            os.makedirs(pickle_path)

    np.random.seed(data_seed)

    yumi_ar = Robot('yumi_palms',
                    pb=True,
                    pb_cfg={
                        'gui': args.visualize,
                        'opengl_render': False
                    },
                    arm_cfg={
                        'self_collision': False,
                        'seed': data_seed
                    })

    r_gel_id = cfg.RIGHT_GEL_ID
    l_gel_id = cfg.LEFT_GEL_ID
    table_id = cfg.TABLE_ID

    alpha = cfg.ALPHA
    K = cfg.GEL_CONTACT_STIFFNESS
    restitution = cfg.GEL_RESTITUION

    p.changeDynamics(yumi_ar.arm.robot_id,
                     r_gel_id,
                     restitution=restitution,
                     contactStiffness=K,
                     contactDamping=alpha * K,
                     rollingFriction=args.rolling)

    p.changeDynamics(yumi_ar.arm.robot_id,
                     l_gel_id,
                     restitution=restitution,
                     contactStiffness=K,
                     contactDamping=alpha * K,
                     rollingFriction=args.rolling)

    yumi_gs = YumiCamsGS(yumi_ar,
                         cfg,
                         exec_thread=False,
                         sim_step_repeat=args.sim_step_repeat)

    for _ in range(10):
        yumi_gs.update_joints(cfg.RIGHT_INIT + cfg.LEFT_INIT)

    cuboid_sampler = CuboidSampler(osp.join(
        os.environ['CODE_BASE'],
        'catkin_ws/src/config/descriptions/meshes/objects/cuboids/nominal_cuboid.stl'
    ),
                                   pb_client=yumi_ar.pb_client)
    cuboid_fname_template = osp.join(
        os.environ['CODE_BASE'],
        'catkin_ws/src/config/descriptions/meshes/objects/cuboids/')

    cuboid_manager = MultiBlockManager(cuboid_fname_template,
                                       cuboid_sampler,
                                       robot_id=yumi_ar.arm.robot_id,
                                       table_id=table_id,
                                       r_gel_id=r_gel_id,
                                       l_gel_id=l_gel_id)

    if args.multi:
        cuboid_fname = cuboid_manager.get_cuboid_fname()
        # cuboid_fname = '/root/catkin_ws/src/config/descriptions/meshes/objects/cuboids/test_cuboid_smaller_4479.stl'
    else:
        cuboid_fname = args.config_package_path + 'descriptions/meshes/objects/' + \
            args.object_name + '_experiments.stl'
    mesh_file = cuboid_fname

    goal_visualization = False
    if args.goal_viz:
        goal_visualization = True

    obj_id, sphere_ids, mesh, goal_obj_id = \
        cuboid_sampler.sample_cuboid_pybullet(
            cuboid_fname,
            goal=goal_visualization,
            keypoints=False)

    cuboid_manager.filter_collisions(obj_id, goal_obj_id)

    p.changeDynamics(obj_id, -1, lateralFriction=1.0)

    # goal_face = 0
    goal_faces = [0, 1, 2, 3, 4, 5]
    from random import shuffle
    shuffle(goal_faces)
    goal_face = goal_faces[0]

    exp_single = SingleArmPrimitives(cfg, yumi_ar.pb_client.get_client_id(),
                                     obj_id, cuboid_fname)
    k = 0
    while True:
        k += 1
        if k > 10:
            print('FAILED TO BUILD GRASPING GRAPH')
            return
        try:
            exp_double = DualArmPrimitives(cfg,
                                           yumi_ar.pb_client.get_client_id(),
                                           obj_id,
                                           cuboid_fname,
                                           goal_face=goal_face)
            break
        except ValueError as e:
            print(e)
            yumi_ar.pb_client.remove_body(obj_id)
            if goal_visualization:
                yumi_ar.pb_client.remove_body(goal_obj_id)
            cuboid_fname = cuboid_manager.get_cuboid_fname()
            print("Cuboid file: " + cuboid_fname)

            obj_id, sphere_ids, mesh, goal_obj_id = \
                cuboid_sampler.sample_cuboid_pybullet(
                    cuboid_fname,
                    goal=goal_visualization,
                    keypoints=False)

            cuboid_manager.filter_collisions(obj_id, goal_obj_id)

            p.changeDynamics(obj_id, -1, lateralFriction=1.0)

    if primitive_name == 'grasp':
        exp_running = exp_double
    else:
        exp_running = exp_single

    action_planner = ClosedLoopMacroActions(cfg,
                                            yumi_gs,
                                            obj_id,
                                            yumi_ar.pb_client.get_client_id(),
                                            args.config_package_path,
                                            replan=args.replan,
                                            object_mesh_file=mesh_file)

    if goal_visualization:
        trans_box_lock = threading.RLock()
        goal_viz = GoalVisual(trans_box_lock,
                              goal_obj_id,
                              action_planner.pb_client,
                              cfg.OBJECT_POSE_3,
                              show_init=False)

    action_planner.update_object(obj_id, mesh_file)
    exp_single.initialize_object(obj_id, cuboid_fname)

    dynamics_info = {}
    dynamics_info['contactDamping'] = alpha * K
    dynamics_info['contactStiffness'] = K
    dynamics_info['rollingFriction'] = args.rolling
    dynamics_info['restitution'] = restitution

    data = {}
    data['saved_data'] = []
    data['metadata'] = {}
    data['metadata']['mesh_file'] = mesh_file
    data['metadata']['cfg'] = cfg
    data['metadata']['dynamics'] = dynamics_info
    data['metadata']['cam_cfg'] = yumi_gs.cam_setup_cfg
    data['metadata']['step_repeat'] = args.sim_step_repeat
    data['metadata']['seed'] = data_seed
    data['metadata']['seed_original'] = args.np_seed

    metadata = data['metadata']

    data_manager = DataManager(pickle_path)
    pred_dir = osp.join(os.environ['CODE_BASE'], cfg.PREDICTION_DIR)
    obs_dir = osp.join(os.environ['CODE_BASE'], cfg.OBSERVATION_DIR)

    if args.save_data:
        with open(osp.join(pickle_path, 'metadata.pkl'), 'wb') as mdata_f:
            pickle.dump(metadata, mdata_f)

    total_trials = 0
    successes = 0

    # prep visualization tools
    palm_mesh_file = osp.join(os.environ['CODE_BASE'], cfg.PALM_MESH_FILE)
    table_mesh_file = osp.join(os.environ['CODE_BASE'], cfg.TABLE_MESH_FILE)
    viz_palms = PalmVis(palm_mesh_file, table_mesh_file, cfg)
    viz_pcd = PCDVis()

    if args.skeleton == 'pg':
        skeleton = ['pull', 'grasp']
    elif args.skeleton == 'gp':
        skeleton = ['grasp', 'pull']
    elif args.skeleton == 'pgp':
        skeleton = ['pull', 'grasp', 'pull']
    else:
        raise ValueError('Unrecognized plan skeleton!')

    pull_sampler = PullSamplerBasic()
    grasp_sampler = GraspSamplerBasic(None)
    # pull_sampler = PullSamplerVAEPubSub(
    #     obs_dir=obs_dir,
    #     pred_dir=pred_dir
    # )
    # grasp_sampler = GraspSamplerVAEPubSub(
    #     default_target=None,
    #     obs_dir=obs_dir,
    #     pred_dir=pred_dir
    # )
    pull_skill = PullRightSkill(pull_sampler, yumi_gs, pulling_planning_wf)
    pull_skill_no_mp = PullRightSkill(pull_sampler,
                                      yumi_gs,
                                      pulling_planning_wf,
                                      ignore_mp=True)
    grasp_skill = GraspSkill(grasp_sampler, yumi_gs, grasp_planning_wf)
    skills = {}
    # skills['pull'] = pull_skill_no_mp
    skills['pull'] = pull_skill
    skills['grasp'] = grasp_skill

    problems_file = '/root/catkin_ws/src/primitives/data/planning/test_problems_0/demo_0.pkl'
    with open(problems_file, 'rb') as f:
        problems_data = pickle.load(f)

    prob_inds = np.arange(len(problems_data), dtype=np.int64).tolist()
    data_inds = np.arange(len(problems_data[0]['problems']),
                          dtype=np.int64).tolist()

    experiment_manager = GraspEvalManager(yumi_gs,
                                          yumi_ar.pb_client.get_client_id(),
                                          pickle_path, args.exp_name, None,
                                          None, None, None, cfg)

    # experiment_manager.set_object_id(
    #     obj_id,
    #     cuboid_fname
    # )

    total_trial_number = 0
    for _ in range(len(problems_data)):
        # prob_ind = 3

        # obj_fname = str(osp.join(
        #     '/root/catkin_ws/src/config/descriptions/meshes/objects/cuboids',
        #     problems_data[prob_ind]['object_name']))

        # print(obj_fname)
        # for j, problem_data in enumerate(problems_data[prob_ind]['problems']):
        for _ in range(len(problems_data[0]['problems'])):
            total_trial_number += 1
            # prob_ind = 8
            # data_ind = 15
            prob_ind = prob_inds[np.random.randint(len(prob_inds))]
            data_ind = data_inds[np.random.randint(len(data_inds))]
            problem_data = problems_data[prob_ind]['problems'][data_ind]

            obj_fname = str(
                osp.join(
                    '/root/catkin_ws/src/config/descriptions/meshes/objects/cuboids',
                    problems_data[prob_ind]['object_name']))
            obj_name = problems_data[prob_ind]['object_name'].split('.stl')[0]
            print(obj_fname)
            start_pose = problem_data['start_vis'].tolist()

            # put object into work at start_pose, with known obj_fname
            yumi_ar.pb_client.remove_body(obj_id)
            if goal_visualization:
                yumi_ar.pb_client.remove_body(goal_obj_id)

            obj_id, sphere_ids, mesh, goal_obj_id = \
                cuboid_sampler.sample_cuboid_pybullet(
                    obj_fname,
                    goal=goal_visualization,
                    keypoints=False)
            if goal_visualization:
                goal_viz.update_goal_obj(goal_obj_id)
                goal_viz.hide_goal_obj()
                cuboid_manager.filter_collisions(obj_id, goal_obj_id)

            exp_single.initialize_object(obj_id, obj_fname)
            experiment_manager.set_object_id(obj_id, obj_fname)

            p.resetBasePositionAndOrientation(obj_id, start_pose[:3],
                                              start_pose[3:])

            p.changeDynamics(obj_id, -1, lateralFriction=1.0)

            yumi_ar.arm.set_jpos(cfg.RIGHT_OUT_OF_FRAME +
                                 cfg.LEFT_OUT_OF_FRAME,
                                 ignore_physics=True)
            time.sleep(0.2)

            real_start_pos = p.getBasePositionAndOrientation(obj_id)[0]
            real_start_ori = p.getBasePositionAndOrientation(obj_id)[1]
            real_start_pose = list(real_start_pos) + list(real_start_ori)

            transformation_des = util.matrix_from_pose(
                util.list2pose_stamped(
                    problem_data['transformation'].tolist()))

            # #### BEGIN BLOCK FOR GETTING INTRO FIGURE
            # R_3 = common.euler2rot([0.0, 0.0, np.pi/4])
            # t_3 = np.array([0.03, 0.25, 0.0])
            # T_3 = np.eye(4)
            # T_3[:-1, :-1] = R_3
            # # T_3[:-1, -1] = t_3
            # print(T_3)
            # trans_des = np.matmul(T_3, transformation_des)

            # goal_pose = util.pose_stamped2list(util.transform_pose(
            #     util.list2pose_stamped(real_start_pose),
            #     util.pose_from_matrix(trans_des)
            # ))
            # if goal_visualization:
            #     goal_viz.update_goal_state(goal_pose)
            #     goal_viz.show_goal_obj()

            # embed()
            # #### END BLOCK FOR GETTING INTRO FIGURE

            goal_pose = util.pose_stamped2list(
                util.transform_pose(
                    util.list2pose_stamped(real_start_pose),
                    util.list2pose_stamped(problem_data['transformation'])))

            # if skeleton is 'pull' 'grasp' 'pull', add an additional SE(2) transformation to the task
            if args.skeleton == 'pgp':
                while True:
                    x, y, dq = exp_single.get_rand_trans_yaw()

                    goal_pose_2_list = copy.deepcopy(goal_pose)
                    goal_pose_2_list[0] = x
                    goal_pose_2_list[1] = y
                    goal_pose_2_list[3:] = common.quat_multiply(
                        dq, np.asarray(goal_pose[3:]))

                    if goal_pose_2_list[0] > 0.2 and goal_pose_2_list[0] < 0.4 and \
                            goal_pose_2_list[1] > -0.3 and goal_pose_2_list[1] < 0.1:
                        rot = common.quat2rot(dq)
                        T_2 = np.eye(4)
                        T_2[:-1, :-1] = rot
                        T_2[:2, -1] = [x - goal_pose[0], y - goal_pose[1]]
                        break

                goal_pose = goal_pose_2_list
                transformation_des = np.matmul(T_2, transformation_des)

            # # if skeleton is 'grasp' first, invert the desired trans and flip everything
            if args.skeleton == 'gp':
                transformation_des = np.linalg.inv(transformation_des)
                start_tmp = copy.deepcopy(start_pose)
                start_pose = goal_pose
                goal_pose = start_tmp

                p.resetBasePositionAndOrientation(obj_id, start_pose[:3],
                                                  start_pose[3:])

                real_start_pos = p.getBasePositionAndOrientation(obj_id)[0]
                real_start_ori = p.getBasePositionAndOrientation(obj_id)[1]
                real_start_pose = list(real_start_pos) + list(real_start_ori)

                time.sleep(0.5)

            # get observation
            obs, pcd = yumi_gs.get_observation(
                obj_id=obj_id, robot_table_id=(yumi_ar.arm.robot_id, table_id))

            pointcloud_pts = np.asarray(obs['down_pcd_pts'][:100, :],
                                        dtype=np.float32)
            pointcloud_pts_full = np.asarray(np.concatenate(obs['pcd_pts']),
                                             dtype=np.float32)

            grasp_sampler.update_default_target(
                np.concatenate(obs['table_pcd_pts'], axis=0)[::500, :])

            trial_data = {}
            trial_data['start_pcd'] = pointcloud_pts_full
            trial_data['start_pcd_down'] = pointcloud_pts
            trial_data['obj_fname'] = cuboid_fname
            trial_data['start_pose'] = np.asarray(real_start_pose)
            trial_data['goal_pose'] = np.asarray(goal_pose)
            trial_data['goal_pose_global'] = np.asarray(goal_pose)
            trial_data['trans_des_global'] = transformation_des

            trial_data['skeleton'] = args.skeleton

            # plan!
            planner = PointCloudTree(pointcloud_pts,
                                     transformation_des,
                                     skeleton,
                                     skills,
                                     start_pcd_full=pointcloud_pts_full)
            start_plan_time = time.time()
            plan_total = planner.plan()
            trial_data['planning_time'] = time.time() - start_plan_time

            if plan_total is None:
                print('Could not find plan')
                experiment_manager.set_mp_success(False, 1)
                obj_data = experiment_manager.get_object_data()
                # obj_data_fname = osp.join(
                #     pickle_path,
                #     obj_name + '_' + str(total_trial_number),
                #     obj_name + '_' + str(total_trial_number) + '_ms_eval_data.pkl')
                obj_data_fname = osp.join(
                    pickle_path, obj_name + '_' + str(total_trial_number) +
                    '_ms_eval_data.pkl')
                if args.save_data:
                    print('Saving to: ' + str(obj_data_fname))
                    with open(obj_data_fname, 'wb') as f:
                        pickle.dump(obj_data, f)
                continue

            plan = copy.deepcopy(plan_total[1:])

            if args.trimesh_viz:
                # from multistep_planning_eval_cfg import get_cfg_defaults
                # import os.path as osp
                # from eval_utils.visualization_tools import PCDVis, PalmVis
                # cfg = get_cfg_defaults()
                # palm_mesh_file = osp.join(os.environ['CODE_BASE'],
                #                         cfg.PALM_MESH_FILE)
                # table_mesh_file = osp.join(os.environ['CODE_BASE'],
                #                         cfg.TABLE_MESH_FILE)
                # viz_palms = PalmVis(palm_mesh_file, table_mesh_file, cfg)
                # viz_pcd = PCDVis()

                ind = 0

                pcd_data = copy.deepcopy(problem_data)
                pcd_data['start'] = plan_total[ind].pointcloud_full
                pcd_data['object_pointcloud'] = plan_total[ind].pointcloud_full
                pcd_data['transformation'] = np.asarray(
                    util.pose_stamped2list(
                        util.pose_from_matrix(plan_total[ind +
                                                         1].transformation)))
                pcd_data['contact_world_frame_right'] = np.asarray(
                    plan_total[ind + 1].palms[:7])
                if skeleton[ind] == 'grasp':
                    pcd_data['contact_world_frame_left'] = np.asarray(
                        plan_total[ind + 1].palms[:7])
                elif skeleton[ind] == 'pull':
                    pcd_data['contact_world_frame_left'] = np.asarray(
                        plan_total[ind + 1].palms[7:])
                scene = viz_palms.vis_palms_pcd(pcd_data,
                                                world=True,
                                                centered=False,
                                                corr=False)
                scene.show()

                # embed()

            # execute plan if one is found...
            pose_plan = [(real_start_pose,
                          util.list2pose_stamped(real_start_pose))]
            for i in range(1, len(plan) + 1):
                pose = util.transform_pose(
                    pose_plan[i - 1][1],
                    util.pose_from_matrix(plan[i - 1].transformation))
                pose_list = util.pose_stamped2list(pose)
                pose_plan.append((pose_list, pose))

            # get palm poses from plan
            palm_pose_plan = []
            for i, node in enumerate(plan):
                palms = copy.deepcopy(node.palms)
                # palms = copy.deepcopy(node.palms_raw) if node.palms_raw is not None else copy.deepcopy(node.palms)
                if skeleton[i] == 'pull':
                    palms[2] -= 0.002
                palm_pose_plan.append(palms)

            # observe results
            full_plan = []
            for i in range(len(plan)):
                if skeleton[i] == 'pull':
                    local_plan = pulling_planning_wf(
                        util.list2pose_stamped(palm_pose_plan[i]),
                        util.list2pose_stamped(palm_pose_plan[i]),
                        util.pose_from_matrix(plan[i].transformation))
                elif skeleton[i] == 'grasp':
                    local_plan = grasp_planning_wf(
                        util.list2pose_stamped(palm_pose_plan[i][7:]),
                        util.list2pose_stamped(palm_pose_plan[i][:7]),
                        util.pose_from_matrix(plan[i].transformation))
                full_plan.append(local_plan)

            grasp_success = True

            action_planner.active_arm = 'right'
            action_planner.inactive_arm = 'left'

            if goal_visualization:
                goal_viz.update_goal_state(goal_pose)
                goal_viz.show_goal_obj()

            if goal_visualization:
                goal_viz.update_goal_state(goal_pose)
                goal_viz.show_goal_obj()

            real_start_pos = p.getBasePositionAndOrientation(obj_id)[0]
            real_start_ori = p.getBasePositionAndOrientation(obj_id)[1]
            real_start_pose = list(real_start_pos) + list(real_start_ori)
            real_start_mat = util.matrix_from_pose(
                util.list2pose_stamped(real_start_pose))

            # embed()
            try:
                start_playback_time = time.time()
                for playback in range(args.playback_num):
                    if playback > 0 and goal_visualization:
                        goal_viz.hide_goal_obj()

                    yumi_ar.pb_client.reset_body(obj_id, pose_plan[0][0][:3],
                                                 pose_plan[0][0][3:])
                    p.changeDynamics(obj_id, -1, lateralFriction=1.0)
                    for i, skill in enumerate(skeleton):
                        if skill == 'pull':
                            # set arm configuration to good start state
                            yumi_ar.arm.set_jpos(cfg.RIGHT_INIT +
                                                 cfg.LEFT_INIT,
                                                 ignore_physics=True)
                            time.sleep(0.5)

                            # move to making contact, and ensure contact is made
                            # try:
                            #     _, _ = action_planner.single_arm_setup(full_plan[i][0], pre=True)
                            # except ValueError as e:
                            #     print(e)
                            #     break
                            _, _ = action_planner.single_arm_setup(
                                full_plan[i][0], pre=True)
                            start_playback_time = time.time()
                            if not experiment_manager.still_pulling():
                                while True:
                                    if experiment_manager.still_pulling(
                                    ) or time.time(
                                    ) - start_playback_time > 20.0:
                                        break
                                    action_planner.single_arm_approach()
                                    time.sleep(0.075)
                                    new_plan = pulling_planning_wf(
                                        yumi_gs.get_current_tip_poses()
                                        ['left'],
                                        yumi_gs.get_current_tip_poses()
                                        ['right'],
                                        util.pose_from_matrix(
                                            plan[i].transformation))
                                pull_plan = new_plan[0]
                            else:
                                pull_plan = full_plan[i][0]
                            # try:
                            #     action_planner.playback_single_arm('pull', pull_plan, pre=False)
                            # except ValueError as e:
                            #     print(e)
                            #     break
                            action_planner.playback_single_arm('pull',
                                                               pull_plan,
                                                               pre=False)
                            grasp_success = grasp_success and experiment_manager.still_pulling(
                                n=False)
                            print('grasp success: ' + str(grasp_success))
                            time.sleep(0.5)
                            action_planner.single_arm_retract()

                        elif skill == 'grasp':
                            yumi_ar.arm.set_jpos([
                                0.9936, -2.1848, -0.9915, 0.8458, 3.7618,
                                1.5486, 0.1127, -1.0777, -2.1187, 0.995, 1.002,
                                -3.6834, 1.8132, 2.6405
                            ],
                                                 ignore_physics=True)
                            time.sleep(0.5)
                            # try:
                            #     _, _ = action_planner.dual_arm_setup(full_plan[i][0], 0, pre=True)
                            # except ValueError as e:
                            #     print(e)
                            #     break
                            _, _ = action_planner.dual_arm_setup(
                                full_plan[i][0], 0, pre=True)
                            start_playback_time = time.time()
                            if not experiment_manager.still_grasping():
                                while True:
                                    if experiment_manager.still_grasping(
                                    ) or time.time(
                                    ) - start_playback_time > 20.0:
                                        break
                                    action_planner.dual_arm_approach()
                                    time.sleep(0.075)
                                    new_plan = grasp_planning_wf(
                                        yumi_gs.get_current_tip_poses()
                                        ['left'],
                                        yumi_gs.get_current_tip_poses()
                                        ['right'],
                                        util.pose_from_matrix(
                                            plan[i].transformation))
                                grasp_plan = new_plan
                            else:
                                grasp_plan = full_plan[i]
                            for k, subplan in enumerate(grasp_plan):
                                # try:
                                #     action_planner.playback_dual_arm('grasp', subplan, k, pre=False)
                                # except ValueError as e:
                                #     print(e)
                                #     break
                                action_planner.playback_dual_arm('grasp',
                                                                 subplan,
                                                                 k,
                                                                 pre=False)
                                if k == 1:
                                    grasp_success = grasp_success and experiment_manager.still_grasping(
                                        n=False)
                                    print('grasp success: ' +
                                          str(grasp_success))
                                time.sleep(1.0)
            except ValueError as e:
                print(e)
                experiment_manager.set_mp_success(True, 1)
                experiment_manager.set_execute_success(False)
                obj_data = experiment_manager.get_object_data()
                # obj_data_fname = osp.join(
                #     pickle_path,
                #     obj_name + '_' + str(total_trial_number),
                #     obj_name + '_' + str(total_trial_number) + '_ms_eval_data.pkl')
                obj_data_fname = osp.join(
                    pickle_path, obj_name + '_' + str(total_trial_number) +
                    '_ms_eval_data.pkl')
                if args.save_data:
                    print('Saving to: ' + str(obj_data_fname))
                    with open(obj_data_fname, 'wb') as f:
                        pickle.dump(obj_data, f)
                continue

            real_final_pos = p.getBasePositionAndOrientation(obj_id)[0]
            real_final_ori = p.getBasePositionAndOrientation(obj_id)[1]
            real_final_pose = list(real_final_pos) + list(real_final_ori)
            real_final_mat = util.matrix_from_pose(
                util.list2pose_stamped(real_final_pose))
            real_T_mat = np.matmul(real_final_mat,
                                   np.linalg.inv(real_start_mat))
            real_T_pose = util.pose_stamped2np(
                util.pose_from_matrix(real_T_mat))

            trial_data['trans_executed'] = real_T_mat
            trial_data['final_pose'] = real_final_pose

            experiment_manager.set_mp_success(True, 1)
            experiment_manager.set_execute_success(True)
            experiment_manager.end_trial(trial_data, grasp_success)

            time.sleep(3.0)

            obj_data = experiment_manager.get_object_data()

            kvs = {}
            kvs['grasp_success'] = obj_data['grasp_success']
            kvs['pos_err'] = np.mean(obj_data['final_pos_error'])
            kvs['ori_err'] = np.mean(obj_data['final_ori_error'])
            kvs['planning_time'] = obj_data['planning_time']
            string = ''

            for k, v in kvs.items():
                string += "%s: %.3f, " % (k, v)
            print(string)

            # obj_data_fname = osp.join(
            #     pickle_path,
            #     obj_name + '_' + str(total_trial_number),
            #     obj_name + '_' + str(total_trial_number)  + '_ms_eval_data.pkl')
            obj_data_fname = osp.join(
                pickle_path,
                obj_name + '_' + str(total_trial_number) + '_ms_eval_data.pkl')
            if args.save_data:
                print('Saving to: ' + str(obj_data_fname))
                with open(obj_data_fname, 'wb') as f:
                    pickle.dump(obj_data, f)