Example #1
0
 def _compute_loss(self, observations, actions, rewards, observations_n,
                   dones):
     '''Compute the loss of the agents.'''
     feed_dict = self.placeholders._make(
         [observations, actions, rewards, observations_n, dones])
     feed_dict = flatten_map(feed_dict._asdict())
     return unflatten_map(self._compute_loss_h(feed_dict))
Example #2
0
 def __init__(self,
              observation_space,
              action_space,
              shared_policy=False,
              shared_critic=False,
              normalize=None):
     super().__init__(observation_space, action_space)
     observation_spaces = self.observation_space.spaces
     action_spaces = self.action_space.spaces
     self.policy = SharedOptions(shared_policy, shared_critic)
     with self.graph.as_default():
         maddpg_module = MaTD3Module(observation_spaces,
                                     action_spaces,
                                     shared_policy,
                                     shared_critic,
                                     normalize=normalize)
         functions = maddpg_module(*self.placeholders)
     self._predicts_h = TfFunction(self.session,
                                   inputs=self.placeholders.observations,
                                   outputs=functions.actor_predict)
     self._compute_values_h = TfFunction(
         self.session,
         inputs=self.placeholders.observations,
         outputs=functions.critic_predict)
     updates = [functions.actor_update, functions.critic_update]
     self._update_targets = TfFunction(self.session, updates=updates)
     optimizers = [functions.actor_optimizer, functions.critic_optimizer]
     inputs = flatten_map(self.placeholders._asdict())
     outputs = flatten_map({
         'actor': functions.actor_losses,
         'critic': functions.critic_losses
     })
     self._train = TfFunction(self.session,
                              inputs=inputs,
                              updates=optimizers,
                              outputs=outputs)
     self._train_critic = TfFunction(self.session,
                                     inputs=inputs,
                                     updates=[functions.critic_optimizer],
                                     outputs=functions.critic_losses)
     self._compute_loss_h = TfFunction(self.session,
                                       inputs=inputs,
                                       outputs=outputs)
Example #3
0
 def __init__(self,
              observation_space,
              action_space,
              shared_policy=False,
              shared_critic=False,
              hyperparameters=None):
     super().__init__(observation_space, action_space)
     hyperparameters = {} if hyperparameters else hyperparameters
     observation_spaces = self.observation_space.spaces
     action_spaces = self.action_space.spaces
     self.policy = SharedOptions(shared_policy, shared_critic)
     with self.graph.as_default():
         maddpg_module = MaddpgModule(
             observation_spaces,
             action_spaces,
             shared_policy,
             shared_critic,
             hyperparameters=hyperparameters.get('agent_parameters'))
         functions = maddpg_module(*self.placeholders,
                                   gamma=hyperparameters.get('gamma', 0.95))
     self._predicts_h = TfFunction(self.session,
                                   inputs=self.placeholders.observations,
                                   outputs=functions.actor_predict)
     self._compute_values_h = TfFunction(
         self.session,
         inputs=self.placeholders.observations,
         outputs=functions.critic_predict)
     updates = [functions.actor_update, functions.critic_update]
     self._update_targets = TfFunction(self.session, updates=updates)
     optimizers = [functions.actor_optimizer, functions.critic_optimizer]
     inputs = flatten_map(self.placeholders._asdict())
     outputs = flatten_map({
         'actor': functions.actor_losses,
         'critic': functions.critic_losses
     })
     self._train = TfFunction(self.session,
                              inputs=inputs,
                              updates=optimizers,
                              outputs=outputs)
     self._compute_loss_h = TfFunction(self.session,
                                       inputs=inputs,
                                       outputs=outputs)
Example #4
0
 def _train_step(self,
                 observations,
                 actions,
                 rewards,
                 observations_n,
                 dones,
                 step=None):
     '''Train the agents.'''
     feed_dict = self.placeholders._make(
         [observations, actions, rewards, observations_n, dones])
     feed_dict = flatten_map(feed_dict._asdict())
     return unflatten_map(self._train(feed_dict))
Example #5
0
 def _train_step(self,
                 observations,
                 actions,
                 rewards,
                 observations_n,
                 dones,
                 step=None):
     '''Train the agents.'''
     feed_dict = self.placeholders._make(
         [observations, actions, rewards, observations_n, dones])
     feed_dict = flatten_map(feed_dict._asdict())
     if step and step % 2 == 0:
         results = unflatten_map(self._train(feed_dict))
     else:
         results = unflatten_map(self._train_critic(feed_dict))
     return results