def test_K6_objects(self):
        """Test K6 product simplifications"""

        #K6(m,i,j)K6Bar(m,k,l) = 1/2(T(l,i)T(k,j)
        #                          + T(k,i)T(l,j)

        my_K6 = color.K6(1,101,102)
        my_K6Bar = color.K6Bar(1,103,104)

        col_str1 = color.ColorString([color.T(104,101),
                                      color.T(103,102)])
        col_str2 = color.ColorString([color.T(103,101),
                                      color.T(104,102)])
        col_str1.coeff = fractions.Fraction(1, 2)
        col_str2.coeff = fractions.Fraction(1, 2)

        self.assertEqual(my_K6.pair_simplify(my_K6Bar),
                         color.ColorFactor([col_str1, col_str2]))

        #K6(m,i,j)K6Bar(n,j,i) = delta6(m,n)

        my_K6 = color.K6(1,101,102)
        my_K6Bar = color.K6Bar(2,102,101)

        self.assertEqual(my_K6.pair_simplify(my_K6Bar),
                         color.ColorFactor([\
                         color.ColorString([color.T6(1,2)])]))

        #K6(m,i,j)K6Bar(n,i,j) = delta6(m,n).
        my_K6 = color.K6(1,101,102)
        my_K6Bar = color.K6Bar(2,101,102)

        self.assertEqual(my_K6.pair_simplify(my_K6Bar),
                         color.ColorFactor([\
                         color.ColorString([color.T6(1,2)])]))
Example #2
0
    def test_colorize_uu_gg(self):
        """Test the colorize function for uu~ > gg"""

        myleglist = base_objects.LegList()

        myleglist.append(base_objects.Leg({'id': -2, 'state': False}))
        myleglist.append(base_objects.Leg({'id': 2, 'state': False}))

        myleglist.extend([base_objects.Leg({'id': 21, 'state': True})] * 2)

        myprocess = base_objects.Process({
            'legs': myleglist,
            'model': self.mymodel
        })

        myamplitude = diagram_generation.Amplitude()

        myamplitude.set('process', myprocess)

        myamplitude.generate_diagrams()

        my_col_basis = color_amp.ColorBasis()

        # S channel
        col_dict = my_col_basis.colorize(myamplitude['diagrams'][0],
                                         self.mymodel)

        goal_dict = {
            (0, 0):
            color.ColorString([color.T(-1000, 1, 2),
                               color.f(3, 4, -1000)])
        }

        self.assertEqual(col_dict, goal_dict)

        # T channel
        col_dict = my_col_basis.colorize(myamplitude['diagrams'][1],
                                         self.mymodel)

        goal_dict = {
            (0, 0):
            color.ColorString([color.T(3, 1, -1000),
                               color.T(4, -1000, 2)])
        }

        self.assertEqual(col_dict, goal_dict)

        # U channel
        col_dict = my_col_basis.colorize(myamplitude['diagrams'][2],
                                         self.mymodel)

        goal_dict = {
            (0, 0):
            color.ColorString([color.T(4, 1, -1000),
                               color.T(3, -1000, 2)])
        }

        self.assertEqual(col_dict, goal_dict)
    def test_delta3_pair_simplify(self):
        """Test delta3 simplify"""

        self.assertEqual(color.K6(1,101,103).pair_simplify(color.T(101,102)),
                         color.ColorFactor([color.ColorString([color.K6(1,103,102)])]))
        self.assertEqual(color.K6(1,103,102).pair_simplify(color.T(102,101)),
                         color.ColorFactor([color.ColorString([color.K6(1,103,101)])]))
        self.assertEqual(color.K6Bar(1,101,103).pair_simplify(color.T(102,101)),
                         color.ColorFactor([color.ColorString([color.K6Bar(1,103,102)])]))
        self.assertEqual(color.K6Bar(1,103,101).pair_simplify(color.T(102,101)),
                         color.ColorFactor([color.ColorString([color.K6Bar(1,103,102)])]))
Example #4
0
    def test_epsilon_object(self):
        """Test the epsilon object"""

        # Espilon should have exactly 3 indices!
        self.assertRaises(AssertionError, color.Epsilon, 1, 2)

        my_epsilon1 = color.Epsilon(2, 3, 1)
        my_epsilon2 = color.Epsilon(5, 1, 4)
        my_epsilon2 = my_epsilon2.complex_conjugate()

        my_goal_str1 = color.ColorString([color.T(2, 4), color.T(3, 5)])
        my_goal_str2 = color.ColorString([color.T(2, 5), color.T(3, 4)])
        my_goal_str2.coeff = fractions.Fraction(-1)
        self.assertEqual(my_epsilon1.pair_simplify(my_epsilon2),
                         color.ColorFactor([my_goal_str1, my_goal_str2]))
Example #5
0
    def closeColorLoop(self, colorize_dict, lcut_charge, lcut_numbers):
        """ Add a color delta in the right representation (depending on the 
        color charge carried by the L-cut particle whose number are given in
        the loop_numbers argument) to close the loop color trace """

        # But for T3 and T6 for example, we must make sure to add a delta with
        # the first index in the fundamental representation.
        if lcut_charge < 0:
            lcut_numbers.reverse()
        if abs(lcut_charge) == 1:
            # No color carried by the lcut particle, there is nothing to do.
            return
        elif abs(lcut_charge) == 3:
            closingCS=color_algebra.ColorString(\
              [color_algebra.T(lcut_numbers[1],lcut_numbers[0])])
        elif abs(lcut_charge) == 6:
            closingCS=color_algebra.ColorString(\
              [color_algebra.T6(lcut_numbers[1],lcut_numbers[0])])
        elif abs(lcut_charge) == 8:
            closingCS=color_algebra.ColorString(\
              [color_algebra.Tr(lcut_numbers[1],lcut_numbers[0])],
              fractions.Fraction(2, 1))
        else:
            raise color_amp.ColorBasis.ColorBasisError, \
        "L-cut particle has an unsupported color representation %s" % lcut_charge

        # Append it to all color strings for this diagram.
        for CS in colorize_dict.values():
            CS.product(closingCS)
Example #6
0
    def get_color_flow_string(my_color_string, octet_indices):
        """Return the color_flow_string (i.e., composed only of T's with 2 
        indices) associated to my_color_string. Take a list of the external leg
        color octet state indices as an input. Returns only the leading N 
        contribution!"""
        # Create a new color factor to allow for simplification
        my_cf = color_algebra.ColorFactor([my_color_string])

        # Add one T per external octet
        for indices in octet_indices:
            if indices[0] == -6:
                # Add a K6 which contracts the antisextet index to a
                # pair of antitriplets
                my_cf[0].append(
                    color_algebra.K6(indices[1], indices[2], indices[3]))
            if indices[0] == 6:
                # Add a K6Bar which contracts the sextet index to a
                # pair of triplets
                my_cf[0].append(
                    color_algebra.K6Bar(indices[1], indices[2], indices[3]))
            if abs(indices[0]) == 8:
                # Add a T which contracts the octet to a
                # triplet-antitriplet pair
                my_cf[0].append(
                    color_algebra.T(indices[1], indices[2], indices[3]))
        # Simplify the whole thing
        my_cf = my_cf.full_simplify()

        # If the result is empty, just return
        if not my_cf:
            return my_cf

        # Return the string with the highest N coefficient
        # (leading N decomposition), and the value of this coeff
        max_coeff = max([cs.Nc_power for cs in my_cf])

        res_cs = [cs for cs in my_cf if cs.Nc_power == max_coeff]

        # If more than one string at leading N...
        if len(res_cs) > 1 and any([not cs.near_equivalent(res_cs[0]) \
                                    for cs in res_cs]):
            raise ColorBasis.ColorBasisError, \
             "More than one color string with leading N coeff: %s" % str(res_cs)

        res_cs = res_cs[0]

        # If the result string does not contain only T's with two indices
        # and Epsilon/EpsilonBar objects
        for col_obj in res_cs:
            if not isinstance(col_obj, color_algebra.T) and \
                   not col_obj.__class__.__name__.startswith('Epsilon'):
                raise ColorBasis.ColorBasisError, \
                  "Color flow decomposition %s contains non T/Epsilon elements" % \
                                                                    str(res_cs)
            if isinstance(col_obj, color_algebra.T) and len(col_obj) != 2:
                raise ColorBasis.ColorBasisError, \
                  "Color flow decomposition %s contains T's w/o 2 indices" % \
                                                                    str(res_cs)

        return res_cs
Example #7
0
    def closeColorLoop(self, colorize_dict, lcut_charge, lcut_numbers):
        """ Add a color delta in the right representation (depending on the 
        color charge carried by the L-cut particle whose number are given in
        the loop_numbers argument) to close the loop color trace."""

        # But for T3 and T6 for example, we must make sure to add a delta with
        # the first index in the fundamental representation.
        if lcut_charge < 0:
            lcut_numbers.reverse()
        if abs(lcut_charge) == 1:
            # No color carried by the lcut particle, there is nothing to do.
            return
        elif abs(lcut_charge) == 3:
            closingCS=color_algebra.ColorString(\
              [color_algebra.T(lcut_numbers[1],lcut_numbers[0])])
        elif abs(lcut_charge) == 6:
            closingCS=color_algebra.ColorString(\
              [color_algebra.T6(lcut_numbers[1],lcut_numbers[0])])
        elif abs(lcut_charge) == 8:
            closingCS=color_algebra.ColorString(\
              [color_algebra.Tr(lcut_numbers[1],lcut_numbers[0])],
              fractions.Fraction(2, 1))
        else:
            raise color_amp.ColorBasis.ColorBasisError, \
        "L-cut particle has an unsupported color representation %s" % lcut_charge

        # Append it to all color strings for this diagram.
        for CS in colorize_dict.values():
            # The double full_simplify() below brings significantly slowdown
            # so that it should be used only when loop_Nc_power is actuall used.
            if self.compute_loop_nc:
                # We first compute the NcPower of this ColorString before
                # *before* the loop color flow is sewed together.
                max_CS_lcut_diag_Nc_power = max(cs.Nc_power \
                      for cs in color_algebra.ColorFactor([CS]).full_simplify())
            # We add here the closing color structure.
            CS.product(closingCS)
            if self.compute_loop_nc:
                # Now compute the Nc power *after* the loop color flow is sewed
                # together and again compute the overall maximum power of Nc
                # appearing in this simplified sewed structure.
                simplified_cs = color_algebra.ColorFactor([CS]).full_simplify()
                if not simplified_cs:
                    # It can be that the color structure simplifies to zero.
                    CS.loop_Nc_power = 0
                    continue

                max_CS_loop_diag_Nc_power = max(cs.Nc_power \
                                                        for cs in simplified_cs)
                # We can now set the power of Nc brought by the potential loop
                # color trace to the corresponding attribute of this ColorStructure
                CS.loop_Nc_power =  max_CS_loop_diag_Nc_power - \
                                                       max_CS_lcut_diag_Nc_power
            else:
                # When not computing loop_nc (whcih is typically used for now
                # only when doing LoopInduced + Madevent, we set the
                # CS.loop_Nc_power to None so that it will cause problems if used.
                CS.loop_Nc_power = None
    def test_complex_conjugate(self):
        """Test the complex conjugation of a color string"""

        my_color_string = color.ColorString([color.T(3, 4, 102, 103),
                                             color.Tr(1, 2, 3)])
        my_color_string.is_imaginary = True

        self.assertEqual(str(my_color_string.complex_conjugate()),
                         '-1 I T(4,3,103,102) Tr(3,2,1)')
    def test_T_simplify(self):
        """Test T simplify"""

        # T(a,b,c,...,i,i) = Tr(a,b,c,...)
        self.assertEqual(color.T(1, 2, 3, 100, 100).simplify(),
                         color.ColorFactor([\
                                    color.ColorString([color.Tr(1, 2, 3)])]))

        # T(a,x,b,x,c,i,j) = 1/2(T(a,c,i,j)Tr(b)-1/Nc T(a,b,c,i,j))
        my_T = color.T(1, 2, 100, 3, 100, 4, 101, 102)
        col_str1 = color.ColorString([color.T(1, 2, 4, 101, 102), color.Tr(3)])
        col_str2 = color.ColorString([color.T(1, 2, 3, 4, 101, 102)])
        col_str1.coeff = fractions.Fraction(1, 2)
        col_str2.coeff = fractions.Fraction(-1, 2)
        col_str2.Nc_power = -1
        self.assertEqual(my_T.simplify(),
                         color.ColorFactor([col_str1, col_str2]))
        self.assertEqual(my_T.simplify(),
                         color.ColorFactor([col_str1, col_str2]))
    def test_T_f_product(self):
        """Test a non trivial T f f product"""

        my_color_factor = color.ColorFactor([\
                                    color.ColorString([color.T(-1000, 1, 2),
                                               color.f(-1, -1000, 5),
                                               color.f(-1, 4, 3)])])

        self.assertEqual(str(my_color_factor.full_simplify()),
        "(-1 T(5,4,3,1,2))+(1 T(5,3,4,1,2))+(1 T(4,3,5,1,2))+(-1 T(3,4,5,1,2))")
Example #11
0
    def test_replace_indices(self):
        """Test indices replacement"""

        repl_dict = {1: 2, 2: 3, 3: 1}

        my_color_string = color.ColorString(
            [color.T(1, 2, 3, 4), color.Tr(3, 2, 1)])

        my_color_string.replace_indices(repl_dict)
        self.assertEqual(str(my_color_string), '1 T(2,3,1,4) Tr(1,3,2)')
        inv_repl_dict = dict([v, k] for k, v in repl_dict.items())
        my_color_string.replace_indices(inv_repl_dict)
        self.assertEqual(str(my_color_string), '1 T(1,2,3,4) Tr(3,2,1)')
    def test_Tr_pair_simplify(self):
        """Test Tr object product simplification"""

        my_Tr1 = color.Tr(1, 2, 3)
        my_Tr2 = color.Tr(4, 2, 5)
        my_T = color.T(4, 2, 5, 101, 102)

        col_str1 = color.ColorString([color.Tr(1, 5, 4, 3)])
        col_str2 = color.ColorString([color.Tr(1, 3), color.Tr(4, 5)])
        col_str1.coeff = fractions.Fraction(1, 2)
        col_str2.coeff = fractions.Fraction(-1, 2)
        col_str2.Nc_power = -1
        self.assertEqual(my_Tr1.pair_simplify(my_Tr2),
                         color.ColorFactor([col_str1, col_str2]))

        col_str1 = color.ColorString([color.T(4, 3, 1, 5, 101, 102)])
        col_str2 = color.ColorString([color.Tr(1, 3), color.T(4, 5, 101, 102)])
        col_str1.coeff = fractions.Fraction(1, 2)
        col_str2.coeff = fractions.Fraction(-1, 2)
        col_str2.Nc_power = -1
        self.assertEqual(my_Tr1.pair_simplify(my_T),
                         color.ColorFactor([col_str1, col_str2]))
    def test_T6_simplify(self):
        """Test T6 simplify"""

        # T6(a,i,j) = 2(K6(i,ii,jj)T(a,jj,kk)K6Bar(j,kk,ii))

        my_T6 = color.T6(1,101,102)

        color.T6.new_index = 10000

        k6 = color.K6(101, 10000, 10001)
        t = color.T(1, 10001, 10002)
        k6b = color.K6Bar(102, 10002, 10000)
        col_string = color.ColorString([k6, t, k6b])
        col_string.coeff = fractions.Fraction(2, 1)
        self.assertEqual(my_T6.simplify(), color.ColorFactor([col_string]))

        my_T6 = color.T6(1,101,102)

        k6 = color.K6(101, 10003, 10004)
        t = color.T(1, 10004, 10005)
        k6b = color.K6Bar(102, 10005, 10003)
        col_string = color.ColorString([k6, t, k6b])
        col_string.coeff = fractions.Fraction(2, 1)
        self.assertEqual(my_T6.simplify(), color.ColorFactor([col_string]))
Example #14
0
    def test_color_flow_string_epsilon(self):
        """Test the color flow decomposition of strings including Epsilon
        and color sextets"""

        # g q > trip q
        my_cs = color.ColorString(
            [color.Epsilon(-1000, 2, 3),
             color.T(1, 4, -1000)])

        goal_cs = color.ColorString(
            [color.T(4, 2001), color.Epsilon(1001, 2, 3)])
        goal_cs.coeff = fractions.Fraction(1, 2)

        self.assertEqual(
            color_amp.ColorBasis.get_color_flow_string(my_cs,
                                                       [(8, 1, 1001, 2001)]),
            goal_cs)

        # g q > six q~
        my_cs = color.ColorString(
            [color.K6(3, -1000, 4),
             color.T(1, -1000, 2)])
        goal_cs = color.ColorString(
            [color.T(1001, 2),
             color.T(1003, 4),
             color.T(3003, 2001)])
        goal_cs.coeff = fractions.Fraction(1, 4)
        self.assertEqual(
            color_amp.ColorBasis.get_color_flow_string(my_cs,
                                                       [(8, 1, 1001, 2001),
                                                        (6, 3, 1003, 3003)]),
            goal_cs)

        # g q~ > trip > q~ q q~

        my_cs = color.ColorString([
            color.Epsilon(-1000, 2, 4),
            color.EpsilonBar(-1001, 3, 5),
            color.T(1, -1001, -1000)
        ])

        goal_cs = color.ColorString(
            [color.Epsilon(1001, 2, 4),
             color.EpsilonBar(2001, 3, 5)])
        goal_cs.coeff = fractions.Fraction(1, 2)

        self.assertEqual(
            color_amp.ColorBasis.get_color_flow_string(my_cs,
                                                       [(8, 1, 1001, 2001)]),
            goal_cs)
    def test_T_pair_simplify(self):
        """Test T object products simplifications"""

        my_T1 = color.T(1, 2, 3, 101, 102)
        my_T2 = color.T(4, 5, 102, 103)
        self.assertEqual(my_T1.pair_simplify(my_T2),
                         color.ColorFactor([color.ColorString([\
                                        color.T(1, 2, 3, 4, 5, 101, 103)])]))

        my_T3 = color.T(4, 2, 5, 103, 104)
        col_str1 = color.ColorString([color.T(1, 5, 101, 104),
                                     color.T(4, 3, 103, 102)])
        col_str2 = color.ColorString([color.T(1, 3, 101, 102),
                                     color.T(4, 5, 103, 104)])
        col_str1.coeff = fractions.Fraction(1, 2)
        col_str2.coeff = fractions.Fraction(-1, 2)
        col_str2.Nc_power = -1
        self.assertEqual(my_T1.pair_simplify(my_T3),
                         color.ColorFactor([col_str1, col_str2]))
Example #16
0
    def test_ungrouping_lepton(self):
        """check that the routines which ungroup the process for the muon/electron processes
        works as expected"""

        # Setup A simple model
        mypartlist = base_objects.ParticleList()
        myinterlist = base_objects.InteractionList()

        # A quark U and its antiparticle
        mypartlist.append(
            base_objects.Particle({
                'name': 'u',
                'antiname': 'u~',
                'spin': 2,
                'color': 3,
                'mass': 'zero',
                'width': 'zero',
                'texname': 'u',
                'antitexname': '\bar u',
                'line': 'straight',
                'charge': 2. / 3.,
                'pdg_code': 2,
                'propagating': True,
                'is_part': True,
                'self_antipart': False
            }))
        u = mypartlist[-1]
        antiu = copy.copy(u)
        antiu.set('is_part', False)

        # A quark D and its antiparticle
        mypartlist.append(
            base_objects.Particle({
                'name': 'd',
                'antiname': 'd~',
                'spin': 2,
                'color': 3,
                'mass': 'zero',
                'width': 'zero',
                'texname': 'd',
                'antitexname': '\bar d',
                'line': 'straight',
                'charge': -1. / 3.,
                'pdg_code': 1,
                'propagating': True,
                'is_part': True,
                'self_antipart': False
            }))
        d = mypartlist[-1]
        antid = copy.copy(d)
        antid.set('is_part', False)

        # A quark C and its antiparticle
        mypartlist.append(
            base_objects.Particle({
                'name': 'c',
                'antiname': 'c~',
                'spin': 2,
                'color': 3,
                'mass': 'zero',
                'width': 'zero',
                'texname': 'u',
                'antitexname': '\bar u',
                'line': 'straight',
                'charge': 2. / 3.,
                'pdg_code': 4,
                'propagating': True,
                'is_part': True,
                'self_antipart': False
            }))
        c = mypartlist[-1]
        antic = copy.copy(c)
        antic.set('is_part', False)

        # electron/positront
        mypartlist.append(
            base_objects.Particle({
                'name': 'e-',
                'antiname': 'e+',
                'spin': 2,
                'color': 1,
                'mass': 'zero',
                'width': 'zero',
                'texname': 'u',
                'antitexname': '\bar u',
                'line': 'straight',
                'charge': 1,
                'pdg_code': 11,
                'propagating': True,
                'is_part': True,
                'self_antipart': False
            }))
        e = mypartlist[-1]
        antie = copy.copy(e)
        mu = copy.copy(e)
        antie.set('is_part', False)
        mu.set('name', 'mu-')
        mu.set('antiname', 'mu+')
        mu.set('pdg_code', 13)
        mypartlist.append(mu)
        antimu = copy.copy(mu)
        antimu.set('is_part', False)

        # A Z
        mypartlist.append(
            base_objects.Particle({
                'name': 'z',
                'antiname': 'z',
                'spin': 3,
                'color': 1,
                'mass': 'MZ',
                'width': 'WZ',
                'texname': 'Z',
                'antitexname': 'Z',
                'line': 'wavy',
                'charge': 0.,
                'pdg_code': 23,
                'propagating': True,
                'is_part': True,
                'self_antipart': True
            }))
        z = mypartlist[-1]

        # Coupling of Z to quarks

        myinterlist.append(base_objects.Interaction({
                      'id': 1,
                      'particles': base_objects.ParticleList(\
                                            [antiu, \
                                             u, \
                                             z]),
                      'color': [color.ColorString([color.T(1,0)])],
                      'lorentz':['FFV1', 'FFV2'],
                      'couplings':{(0, 0):'GUZ1', (0, 1):'GUZ2'},
                      'orders':{'QED':1}}))

        myinterlist.append(base_objects.Interaction({
                      'id': 2,
                      'particles': base_objects.ParticleList(\
                                            [antid, \
                                             d, \
                                             z]),
                      'color': [color.ColorString([color.T(1,0)])],
                      'lorentz':['FFV1', 'FFV2'],
                      'couplings':{(0, 0):'GDZ1', (0, 1):'GDZ2'},
                      'orders':{'QED':1}}))

        myinterlist.append(base_objects.Interaction({
                      'id': 3,
                      'particles': base_objects.ParticleList(\
                                            [antic, \
                                             c, \
                                             z]),
                      'color': [color.ColorString([color.T(1,0)])],
                      'lorentz':['FFV1', 'FFV2'],
                      'couplings':{(0, 0):'GUZ1', (0, 1):'GUZ2'},
                      'orders':{'QED':1}}))

        # Coupling of Z to leptons
        myinterlist.append(base_objects.Interaction({
                      'id': 4,
                      'particles': base_objects.ParticleList(\
                                            [antie, \
                                             e, \
                                             z]),
                      'color': [color.ColorString()],
                      'lorentz':['FFV1', 'FFV2'],
                      'couplings':{(0, 0):'GLZ1', (0, 1):'GLZ2'},
                      'orders':{'QED':1}}))

        # Coupling of Z to leptons
        myinterlist.append(base_objects.Interaction({
                      'id': 5,
                      'particles': base_objects.ParticleList(\
                                            [antimu, \
                                             mu, \
                                             z]),
                      'color': [color.ColorString()],
                      'lorentz':['FFV1', 'FFV2'],
                      'couplings':{(0, 0):'GLZ1', (0, 1):'GLZ2'},
                      'orders':{'QED':1}}))

        mymodel = base_objects.Model()
        mymodel.set('particles', mypartlist)
        mymodel.set('interactions', myinterlist)
        mymodel.set('name', 'sm')

        procs = [[1, -1, 23], [2, -2, 23], [4, -4, 23]]
        decays = [[23, 11, -11], [23, 13, -13]]
        coreamplitudes = diagram_generation.AmplitudeList()
        decayamplitudes = diagram_generation.AmplitudeList()
        decayprocs = base_objects.ProcessList()

        #Building the basic objects
        for proc in procs:
            # Define the multiprocess
            my_leglist = base_objects.LegList([\
                base_objects.Leg({'id': id, 'state': True}) for id in proc])

            my_leglist[0].set('state', False)
            my_leglist[1].set('state', False)

            my_process = base_objects.Process({
                'legs': my_leglist,
                'model': mymodel
            })
            my_amplitude = diagram_generation.Amplitude(my_process)
            my_amplitude.set('has_mirror_process', True)
            coreamplitudes.append(my_amplitude)

        for proc in decays:
            # Define the multiprocess
            my_leglist = base_objects.LegList([\
                base_objects.Leg({'id': id, 'state': True}) for id in proc])

            my_leglist[0].set('state', False)

            my_process = base_objects.Process({
                'legs': my_leglist,
                'model': mymodel,
                'is_decay_chain': True
            })
            my_amplitude = diagram_generation.Amplitude(my_process)
            decayamplitudes.append(my_amplitude)
            decayprocs.append(my_process)

        decays = diagram_generation.DecayChainAmplitudeList([\
                         diagram_generation.DecayChainAmplitude({\
                                            'amplitudes': decayamplitudes})])

        decay_chains = diagram_generation.DecayChainAmplitude({\
            'amplitudes': coreamplitudes,
            'decay_chains': decays})

        dc_subproc_group = group_subprocs.DecayChainSubProcessGroup.\
              group_amplitudes(\
                 diagram_generation.DecayChainAmplitudeList([decay_chains]))

        subproc_groups = \
                       dc_subproc_group.generate_helas_decay_chain_subproc_groups()

        ######################
        ##  Make the test!! ##
        ######################
        self.assertEqual(len(subproc_groups), 1)
        subproc_groups = subproc_groups.split_lepton_grouping()
        self.assertEqual(len(subproc_groups), 2)

        # check that indeed
        for group in subproc_groups:
            self.assertEqual(len(group['matrix_elements']), 2)
            has_muon = any(
                abs(l['id']) == 13 for l in group['matrix_elements'][0]
                ['processes'][0]['decay_chains'][0]['legs'])
            for me in group['matrix_elements']:
                if abs(me['processes'][0]['legs'][0]['id']) == 1:
                    self.assertEqual(len(me['processes']), 1)
                else:
                    self.assertEqual(len(me['processes']), 2)
                for proc in me['processes']:
                    for dec in proc['decay_chains']:
                        if has_muon:
                            self.assertFalse(
                                any(abs(l['id']) == 11 for l in dec['legs']))
                        else:
                            self.assertFalse(
                                any(abs(l['id']) == 13 for l in dec['legs']))

            self.assertNotEqual(group['name'], 'qq_z_z_ll')
            if has_muon:
                self.assertEqual(group['name'], 'qq_z_z_mummup')
            else:
                self.assertEqual(group['name'], 'qq_z_z_emep')
            group['name']
Example #17
0
def legs_to_color_link_string(leg1, leg2):  #test written, all cases
    """given two FKSlegs, returns a dictionary containing:
    --string: the color link between the two particles, to be appended to
        the old color string
        extra minus or 1/2 factor are included as it was done in MadDipole
    --replacements: a pair of lists containing the replacements of the color 
        indices in the old string to match the link 
    """
    #the second-to-last index of the t is the triplet,
    # the last is the anti-triplet

    legs = FKSLegList([leg1, leg2])
    dict = {}
    min_index = -3000
    iglu = min_index * 2
    string = color_algebra.ColorString()
    replacements = []
    if leg1 != leg2:
        for leg in legs:
            min_index -= 1
            num = leg.get('number')
            replacements.append([num, min_index])
            icol = 1
            if not leg.get('state'):
                icol = -1
            if leg.get('color') * icol == 3:
                string.product(
                    color_algebra.ColorString(
                        [color_algebra.T(iglu, num, min_index)]))
                string.coeff = string.coeff * (-1)
            elif leg.get('color') * icol == -3:
                string.product(
                    color_algebra.ColorString(
                        [color_algebra.T(iglu, min_index, num)]))
            elif leg.get('color') == 8:
                string.product(
                    color_algebra.ColorString(
                        init_list=[color_algebra.f(min_index, iglu, num)],
                        is_imaginary=True))

    else:
        icol = 1
        if not leg1.get('state'):
            icol = -1
        num = leg1.get('number')
        replacements.append([num, min_index - 1])
        if leg1.get('color') * icol == 3:
            string = color_algebra.ColorString(
                [color_algebra.T(iglu, iglu, num, min_index - 1)])
        elif leg1.get('color') * icol == -3:
            string = color_algebra.ColorString(
                [color_algebra.T(iglu, iglu, min_index - 1, num)])
        elif leg1.get('color') == 8:
            string = color_algebra.ColorString(
                init_list=[color_algebra.f(min_index - 1, iglu, min_index)],
                is_imaginary=True)
            string.product(
                color_algebra.ColorString(
                    init_list=[color_algebra.f(min_index, iglu, num)],
                    is_imaginary=True))

        string.coeff = string.coeff * fractions.Fraction(1, 2)
    dict['replacements'] = replacements
    dict['string'] = string

    return dict
Example #18
0
        color.ColorString([color.f(-1, 0, 2), color.f(-1, 1, 3)]),
        color.ColorString([color.f(-1, 0, 3), color.f(-1, 1, 2)]),
        color.ColorString([color.f(-1, 0, 1), color.f(-1, 2, 3)])
    ],
    'lorentz': ['L(p1,p2,p3)', 'L(p2,p3,p1)', 'L3'],
    'couplings': {(0, 0): 'G^2', (1, 1): 'G^2', (2, 2): 'G^2'},
    'orders': {'QCD': 2}
}))

# u u~ g
interactions.append(base_objects.Interaction({
    'id': 3,
    'particles': base_objects.ParticleList([
        up, antiup, gluon
    ]),
    'color': [color.ColorString([color.T(2, 0, 1)])],
    'lorentz': ['L1'],
    'couplings': {(0, 0): 'GQQ'},
    'orders': {'QCD': 1}
}))

# d d~ g
interactions.append(base_objects.Interaction({
    'id': 4,
    'particles': base_objects.ParticleList([
        down, antidown, gluon
    ]),
    'color': [color.ColorString([color.T(2, 0, 1)])],
    'lorentz': ['L1'],
    'couplings': {(0, 0): 'GQQ'},
    'orders': {'QCD': 1}
Example #19
0
    def test_read_interactions(self):
        """Test the output of import interactions.dat file"""

        particles_dat_str = """ve ve~ F S ZERO ZERO S ve 12
                                vm vm~ F S ZERO ZERO S vm 14
                                vt vt~ F S ZERO ZERO S vt 16
                                e- e+ F S ZERO ZERO S e 11
                                m- m+ F S ZERO ZERO S m 13
                                tt- tt+ F S MTA ZERO S tt 15
                                u u~ F S ZERO ZERO T u 2
                                c c~ F S MC ZERO T c 4
                                t t~ F S MT WT T t 6
                                d d~ F S ZERO ZERO T d 1
                                s s~ F S ZERO ZERO T s 3
                                b b~ F S MB ZERO T b 5
                                a a V W ZERO ZERO S a 22
                                z z V W MZ WZ S Z 23
                                w+ w- V W MW WW S W 24
                                g g V C ZERO ZERO O G 21
                                h h S D MH WH S H 25
                                T1 T1 T D ZERO ZERO O T1 8000002"""

        interactions_dat_str = """# Interactions associated with Standard_Model
                                    w+   w-   a MGVX3   QED
                                    g   g   T1 MGVX2   QCD a
                                    w+   w-   w+   w- MGVX6   DUM0   QED QED n
                                    e-   ve   w- MGVX24   QED
                                    e+   ve~   w+ MGVX25   QED
                                    u   u   g MGVX1   QCD
                                    u   u   a MGVX4   QED
                                    # And now some bad format entries
                                    # which should be ignored with a warning
                                    k+ k- a test QED
                                    g g test QCD"""

        fsock_part = StringIO.StringIO(particles_dat_str)
        fsock_inter = StringIO.StringIO(interactions_dat_str)

        myparts = import_v4.read_particles_v4(fsock_part)

        wplus = copy.copy(myparts[14])
        wmin = copy.copy(myparts[14])
        wmin.set('is_part', False)
        eminus = copy.copy(myparts[3])
        eplus = copy.copy(myparts[3])
        eplus.set('is_part', False)
        enu = copy.copy(myparts[0])
        enubar = copy.copy(myparts[0])
        enubar.set('is_part', False)
        photon = copy.copy(myparts[12])
        gluon = copy.copy(myparts[15])
        t1 = copy.copy(myparts[17])
        u = myparts[6]
        ubar = copy.copy(myparts[6])
        ubar.set('is_part', False)

        my_i_f = color.ColorString([color.f(0, 1, 2)])
        my_i_f.is_imaginary = True

        goal_inter_list = base_objects.InteractionList([ \
                    base_objects.Interaction(
                                    {'id':1,
                                     'particles':base_objects.ParticleList([
                                                                wplus,
                                                                wmin,
                                                                photon]),

                                     'color':[],
                                     'lorentz':[''],
                                     'couplings':{(0, 0):'MGVX3'},
                                     'orders':{'QED':1}}),
                     base_objects.Interaction(
                                    {'id':2,
                                     'particles':base_objects.ParticleList([
                                                                gluon,
                                                                gluon,
                                                                t1]),

                                     'color':[my_i_f],
                                     'lorentz':['A'],
                                     'couplings':{(0, 0):'MGVX2'},
                                     'orders':{'QCD':1}}),
                     base_objects.Interaction(
                                    {'id':3,
                                     'particles':base_objects.ParticleList([
                                                                wplus,
                                                                wmin,
                                                                wplus,
                                                                wmin]),
                                     'color':[],
                                     'lorentz':['WWVVN'],
                                     'couplings':{(0, 0):'MGVX6'},
                                     'orders':{'QED':2}}),

                     base_objects.Interaction(
                                    {'id':4,
                                     'particles':base_objects.ParticleList([
                                                                eplus,
                                                                enu,
                                                                wmin]),
                                     'color':[],
                                     'lorentz':[''],
                                     'couplings':{(0, 0):'MGVX24'},
                                     'orders':{'QED':1}}),

                     base_objects.Interaction(
                                    {'id':5,
                                     'particles':base_objects.ParticleList([
                                                                eminus,
                                                                enubar,
                                                                wplus]),
                                     'color':[],
                                     'lorentz':[''],
                                     'couplings':{(0, 0):'MGVX25'},
                                     'orders':{'QED':1}}),

                     base_objects.Interaction(
                                    {'id':6,
                                     'particles':base_objects.ParticleList([
                                                                ubar,
                                                                u,
                                                                gluon]),
                                     'color':[color.ColorString(\
                                              [color.T(2, 1, 0)])],
                                     'lorentz':[''],
                                     'couplings':{(0, 0):'MGVX1'},
                                     'orders':{'QCD':1}}),

                     base_objects.Interaction(
                                    {'id':7,
                                     'particles':base_objects.ParticleList([
                                                                ubar,
                                                                u,
                                                                photon]),
                                     'color':[color.ColorString(\
                                              [color.T(1, 0)])],
                                     'lorentz':[''],
                                     'couplings':{(0, 0):'MGVX4'},
                                     'orders':{'QED':1}})])
        
        result = import_v4.read_interactions_v4(fsock_inter, myparts)
        self.assertEqual(len(result), len(goal_inter_list))
        for i in range(len(result)):
            self.assertEqual(result[i], goal_inter_list[i])
    def test_sextet_products(self):
        """Test non trivial product of sextet operators"""

        # T6[2, 101, 102] T6[2, 102, 103] = (-1 + Nc) (2 + Nc) delta6[101, 103])/Nc

        my_color_factor = color.ColorFactor([\
                    color.ColorString([color.T6(2, 101, 102),
                                       color.T6(2, 102, 103)])])

        col_str1 = color.ColorString([color.T6(101,103)])
        col_str1.Nc_power = 1
        col_str2 = copy.copy(col_str1)
        col_str2.Nc_power = 0
        col_str3 = copy.copy(col_str1)
        col_str3.Nc_power = -1
        col_str3.coeff = fractions.Fraction(-2, 1)

        self.assertEqual(my_color_factor.full_simplify(),
                         color.ColorFactor([col_str1, col_str2, col_str3]))

        # T6[2, 101, 102] T6[3, 102, 101] = 1/2 (2 + Nc) delta8[2, 3]

        my_color_factor = color.ColorFactor([\
                    color.ColorString([color.T6(2, 101, 102),
                                       color.T6(3, 102, 101)])])

        col_str1 = color.ColorString([color.Tr(2,3)])
        col_str1.Nc_power = 1
        col_str1.coeff = fractions.Fraction(1)
        col_str2 = copy.copy(col_str1)
        col_str2.Nc_power = 0
        col_str2.coeff = fractions.Fraction(2)

        self.assertEqual(my_color_factor.full_simplify(),
                         color.ColorFactor([col_str1, col_str2]))

        
        # K6[1, 101, 102] T[2, 102, 103] T[2, 103, 104] K6Bar[1, 104, 101]
        #                 = 1/4 (-1 + Nc) (1 + Nc)^2
        #                 = 1/4 (-1 - Nc + Nc^2 + Nc^3)

        my_color_factor = color.ColorFactor([\
                    color.ColorString([color.K6(1, 101, 102),
                                       color.T(2, 102, 103),
                                       color.T(2, 103, 104),
                                       color.K6Bar(1, 104, 101)])])

        col_str1 = color.ColorString()
        col_str1.Nc_power = 3
        col_str1.coeff = fractions.Fraction(1, 4)
        col_str2 = color.ColorString()
        col_str2.Nc_power = 2
        col_str2.coeff = fractions.Fraction(1, 4)
        col_str3 = color.ColorString()
        col_str3.Nc_power = 1
        col_str3.coeff = fractions.Fraction(-1, 4)
        col_str4 = color.ColorString()
        col_str4.Nc_power = 0
        col_str4.coeff = fractions.Fraction(-1, 4)

        self.assertEqual(my_color_factor.full_simplify(),
                         color.ColorFactor([col_str1, col_str3,
                                            col_str2, col_str4]))

        # T6[2, 101, 102] T6[2, 102, 103] K6[103, 99, 98] K6Bar[101, 98, 99]
        #                 = 1/2 (-1 + Nc) (1 + Nc) (2 + Nc)
        #                 = 1/2 (Nc^3 + 2 Nc^2 - Nc - 2)

        my_color_factor = color.ColorFactor([\
                    color.ColorString([color.T6(2, 101, 102),
                                       color.T6(2, 102, 103),
                                       color.K6(103,99, 98),
                                       color.K6Bar(101, 98, 99)])])

        col_str1 = color.ColorString()
        col_str1.Nc_power = 3
        col_str1.coeff = fractions.Fraction(1, 2)
        col_str2 = color.ColorString()
        col_str2.Nc_power = 2
        col_str2.coeff = fractions.Fraction(1, 1)
        col_str3 = color.ColorString()
        col_str3.Nc_power = 1
        col_str3.coeff = fractions.Fraction(-1, 2)
        col_str4 = color.ColorString()
        col_str4.Nc_power = 0
        col_str4.coeff = fractions.Fraction(-1, 1)

        self.assertEqual(my_color_factor.full_simplify(),
                         color.ColorFactor([col_str2, col_str1, 
                                            col_str3, col_str4]))

        # K6[103, 99, 98] T[80, 98, 100] K6Bar[103, 100, 97] T[80, 99, 97]
        #                 = -(1/4) + Nc^2/4

        my_color_factor = color.ColorFactor([\
                    color.ColorString([color.K6(103, 99, 98),
                                       color.T(80, 98, 100),
                                       color.K6Bar(103, 100, 97),
                                       color.T(80, 99, 97)])])

        col_str1 = color.ColorString()
        col_str1.Nc_power = 2
        col_str1.coeff = fractions.Fraction(1, 4)
        col_str2 = color.ColorString()
        col_str2.Nc_power = 0
        col_str2.coeff = fractions.Fraction(-1, 4)

        self.assertEqual(my_color_factor.full_simplify(),
                         color.ColorFactor([col_str1, col_str2]))
Example #21
0
    def test_colorize_uux_ggg(self):
        """Test the colorize function for uu~ > ggg"""

        myleglist = base_objects.LegList()

        myleglist.append(base_objects.Leg({'id': 2, 'state': False}))
        myleglist.append(base_objects.Leg({'id': -2, 'state': False}))

        myleglist.extend([base_objects.Leg({'id': 21, 'state': True})] * 3)

        myprocess = base_objects.Process({
            'legs': myleglist,
            'model': self.mymodel
        })

        myamplitude = diagram_generation.Amplitude()

        myamplitude.set('process', myprocess)

        myamplitude.generate_diagrams()

        my_col_basis = color_amp.ColorBasis()

        # First diagram with two 3-gluon vertices
        col_dict = my_col_basis.colorize(myamplitude['diagrams'][0],
                                         self.mymodel)
        goal_dict = {
            (0, 0, 0):
            color.ColorString([
                color.T(-1000, 2, 1),
                color.f(-1001, 3, 4),
                color.f(-1000, -1001, 5)
            ])
        }

        self.assertEqual(col_dict, goal_dict)

        # Diagram with one 4-gluon vertex
        col_dict = my_col_basis.colorize(myamplitude['diagrams'][3],
                                         self.mymodel)

        goal_dict = {
            (0, 0):
            color.ColorString([
                color.T(-1000, 2, 1),
                color.f(-1001, 3, 5),
                color.f(-1001, 4, -1000)
            ]),
            (0, 1):
            color.ColorString([
                color.T(-1000, 2, 1),
                color.f(-1002, 3, -1000),
                color.f(-1002, 4, 5)
            ]),
            (0, 2):
            color.ColorString([
                color.T(-1000, 2, 1),
                color.f(-1003, 3, 4),
                color.f(-1003, 5, -1000)
            ])
        }

        self.assertEqual(col_dict, goal_dict)
    def setUp(self):

        # Set up model
        mypartlist = base_objects.ParticleList()
        myinterlist = base_objects.InteractionList()

        # u and c quarkd and their antiparticles
        mypartlist.append(
            base_objects.Particle({
                'name': 'u',
                'antiname': 'u~',
                'spin': 2,
                'color': 3,
                'mass': 'ZERO',
                'width': 'ZERO',
                'texname': 'u',
                'antitexname': '\bar u',
                'line': 'straight',
                'charge': 2. / 3.,
                'pdg_code': 2,
                'propagating': True,
                'is_part': True,
                'self_antipart': False
            }))
        u = mypartlist[len(mypartlist) - 1]
        antiu = copy.copy(u)
        antiu.set('is_part', False)

        mypartlist.append(
            base_objects.Particle({
                'name': 'c',
                'antiname': 'c~',
                'spin': 2,
                'color': 3,
                'mass': 'MC',
                'width': 'ZERO',
                'texname': 'c',
                'antitexname': '\bar c',
                'line': 'straight',
                'charge': 2. / 3.,
                'pdg_code': 4,
                'propagating': True,
                'is_part': True,
                'self_antipart': False
            }))
        c = mypartlist[len(mypartlist) - 1]
        antic = copy.copy(c)
        antic.set('is_part', False)

        # A gluon
        mypartlist.append(
            base_objects.Particle({
                'name': 'g',
                'antiname': 'g',
                'spin': 3,
                'color': 8,
                'mass': 'ZERO',
                'width': 'ZERO',
                'texname': 'g',
                'antitexname': 'g',
                'line': 'curly',
                'charge': 0.,
                'pdg_code': 21,
                'propagating': True,
                'is_part': True,
                'self_antipart': True
            }))

        g = mypartlist[len(mypartlist) - 1]

        # A photon
        mypartlist.append(
            base_objects.Particle({
                'name': 'Z',
                'antiname': 'Z',
                'spin': 3,
                'color': 1,
                'mass': 'MZ',
                'width': 'WZ',
                'texname': 'Z',
                'antitexname': 'Z',
                'line': 'wavy',
                'charge': 0.,
                'pdg_code': 23,
                'propagating': True,
                'is_part': True,
                'self_antipart': True
            }))
        z = mypartlist[len(mypartlist) - 1]

        # Gluon couplings to quarks
        myinterlist.append(base_objects.Interaction({
                      'id': 1,
                      'particles': base_objects.ParticleList(\
                                            [antiu, \
                                             u, \
                                             g]),
                      'color': [color.ColorString([color.T(2, 1, 0)])],
                      'lorentz':['FFV1'],
                      'couplings':{(0, 0):'GC_10'},
                      'orders':{'QCD':1}}))

        # Gamma couplings to quarks
        myinterlist.append(base_objects.Interaction({
                      'id': 2,
                      'particles': base_objects.ParticleList(\
                                            [antiu, \
                                             u, \
                                             z]),
                      'color': [color.ColorString([color.T(1, 0)])],
                      'lorentz':['FFV2', 'FFV5'],
                      'couplings':{(0,0): 'GC_35', (0,1): 'GC_47'},
                      'orders':{'QED':1}}))

        self.mymodel.set('particles', mypartlist)
        self.mymodel.set('interactions', myinterlist)
        self.mymodel.set('name', 'sm')

        self.mypythonmodel = helas_call_writers.PythonUFOHelasCallWriter(
            self.mymodel)

        myleglist = base_objects.LegList()

        myleglist.append(base_objects.Leg({'id': 2, 'state': False}))
        myleglist.append(base_objects.Leg({'id': -2, 'state': False}))
        myleglist.append(base_objects.Leg({'id': 2, 'state': True}))
        myleglist.append(base_objects.Leg({'id': -2, 'state': True}))

        myproc = base_objects.Process({
            'legs': myleglist,
            'model': self.mymodel
        })

        myamplitude = diagram_generation.Amplitude({'process': myproc})

        self.mymatrixelement = helas_objects.HelasMultiProcess(myamplitude)

        myleglist = base_objects.LegList()

        myleglist.append(
            base_objects.Leg({
                'id': 4,
                'state': False,
                'number': 1
            }))
        myleglist.append(
            base_objects.Leg({
                'id': -4,
                'state': False,
                'number': 2
            }))
        myleglist.append(
            base_objects.Leg({
                'id': 4,
                'state': True,
                'number': 3
            }))
        myleglist.append(
            base_objects.Leg({
                'id': -4,
                'state': True,
                'number': 4
            }))

        myproc = base_objects.Process({
            'legs': myleglist,
            'model': self.mymodel
        })

        self.mymatrixelement.get('matrix_elements')[0].\
                                               get('processes').append(myproc)

        self.exporter = export_python.ProcessExporterPython(\
            self.mymatrixelement, self.mypythonmodel)
Example #23
0
    def test_color_flow_string(self):
        """Test the color flow decomposition of various color strings"""

        # qq~>qq~
        my_cs = color.ColorString([color.T(-1000, 1, 2), color.T(-1000, 3, 4)])

        goal_cs = color.ColorString([color.T(1, 4), color.T(3, 2)])
        goal_cs.coeff = fractions.Fraction(1, 2)

        self.assertEqual(color_amp.ColorBasis.get_color_flow_string(my_cs, []),
                         goal_cs)

        # qq~>qq~g
        my_cs = color.ColorString(
            [color.T(-1000, 1, 2),
             color.T(-1000, 3, 4),
             color.T(5, 4, 6)])
        goal_cs = color.ColorString(
            [color.T(1, 2005),
             color.T(3, 2), color.T(1005, 6)])
        goal_cs.coeff = fractions.Fraction(1, 4)
        self.assertEqual(
            color_amp.ColorBasis.get_color_flow_string(my_cs,
                                                       [(8, 5, 1005, 2005)]),
            goal_cs)

        # gg>gg
        my_cs = color.ColorString(
            [color.Tr(-1000, 1, 2),
             color.Tr(-1000, 3, 4)])

        goal_cs = color.ColorString([
            color.T(1001, 2002),
            color.T(1002, 2003),
            color.T(1003, 2004),
            color.T(1004, 2001)
        ])
        goal_cs.coeff = fractions.Fraction(1, 32)

        self.assertEqual(
            color_amp.ColorBasis.get_color_flow_string(my_cs,
                                                       [(8, 1, 1001, 2001),
                                                        (8, 2, 1002, 2002),
                                                        (8, 3, 1003, 2003),
                                                        (8, 4, 1004, 2004)]),
            goal_cs)
Example #24
0
def read_interactions_v4(fsock, ref_part_list):
    """Read a list of interactions from stream fsock, using the old v4 format.
    Requires a ParticleList object as an input to recognize particle names."""

    logger.info('load interactions')
    myinterlist = InteractionList()

    if not isinstance(ref_part_list, ParticleList):
        raise ValueError, \
            "Object %s is not a valid ParticleList" % repr(ref_part_list)

    for line in fsock:
        myinter = Interaction()

        line = line.split("#", 2)[0]  # remove any comment
        line = line.strip()  # makes the string clean

        if line != "":  # skip blank
            values = line.split()
            part_list = ParticleList()

            try:
                for str_name in values:
                    curr_part = ref_part_list.get_copy(str_name.lower())
                    if isinstance(curr_part, Particle):
                        # Look at the total number of strings, stop if
                        # anyway not enough, required if a variable name
                        # corresponds to a particle! (eg G)
                        if len(values) >= 2 * len(part_list) + 1:
                            part_list.append(curr_part)
                        else:
                            break
                    # also stops if string does not correspond to
                    # a particle name
                    else:
                        break

                if len(part_list) < 3:
                    raise Interaction.PhysicsObjectError, \
                        "Vertex with less than 3 known particles found."

                # Flip part/antipart of first part for FFV, FFS, FFT vertices
                # according to v4 convention
                spin_array = [part['spin'] for part in part_list]
                if spin_array[:2] == [2, 2] and \
                   not part_list[0].get('self_antipart'):
                    part_list[0]['is_part'] = not part_list[0]['is_part']

                myinter.set('particles', part_list)

                # Give color structure
                # Order particles according to color
                # Don't consider singlets
                color_parts = sorted(enumerate(part_list), lambda p1, p2:\
                                     p1[1].get_color() - p2[1].get_color())
                color_ind = [(i, part.get_color()) for i, part in \
                             color_parts if part.get_color() !=1]
                colors = [c for i, c in color_ind]
                ind = [i for i, c in color_ind]

                # Set color empty by default
                myinter.set('color', [])
                if not colors:
                    # All color singlets - set empty
                    pass
                elif colors == [-3, 3]:
                    # triplet-triplet-singlet coupling
                    myinter.set('color', [color.ColorString(\
                        [color.T(ind[1], ind[0])])])
                elif colors == [8, 8]:
                    # octet-octet-singlet coupling
                    my_cs = color.ColorString(\
                        [color.Tr(ind[0], ind[1])])
                    my_cs.coeff = fractions.Fraction(2)
                    myinter.set('color', [my_cs])
                elif colors == [-3, 3, 8]:
                    # triplet-triplet-octet coupling
                    myinter.set('color', [color.ColorString(\
                        [color.T(ind[2], ind[1], ind[0])])])
                elif colors == [8, 8, 8]:
                    # Triple glue coupling
                    my_color_string = color.ColorString(\
                        [color.f(ind[0], ind[1], ind[2])])
                    my_color_string.is_imaginary = True
                    myinter.set('color', [my_color_string])
                elif colors == [-3, 3, 8, 8]:
                    my_cs1 = color.ColorString(\
                        [color.T(ind[2], ind[3], ind[1], ind[0])])
                    my_cs2 = color.ColorString(\
                        [color.T(ind[3], ind[2], ind[1], ind[0])])
                    myinter.set('color', [my_cs1, my_cs2])
                elif colors == [8, 8, 8, 8]:
                    # 4-glue coupling
                    cs1 = color.ColorString(
                        [color.f(0, 1, -1),
                         color.f(2, 3, -1)])
                    #cs1.coeff = fractions.Fraction(-1)
                    cs2 = color.ColorString(
                        [color.f(2, 0, -1),
                         color.f(1, 3, -1)])
                    #cs2.coeff = fractions.Fraction(-1)
                    cs3 = color.ColorString(
                        [color.f(1, 2, -1),
                         color.f(0, 3, -1)])
                    #cs3.coeff = fractions.Fraction(-1)
                    myinter.set('color', [cs1, cs2, cs3])
#   The following line are expected to be correct but not physical validations
#    have been performed. So we keep it commented for the moment.
#                elif colors == [3, 3, 3]:
#                    my_color_string = color.ColorString(\
#                        [color.Epsilon(ind[0], ind[1], ind[2])])
#                    myinter.set('color', [my_color_string])
#                elif colors == [-3, -3, -3]:
#                    my_color_string = color.ColorString(\
#                        [color.EpsilonBar(ind[0], ind[1], ind[2])])
#                    myinter.set('color', [my_color_string])
                else:
                    logger.warning(\
                        "Color combination %s not yet implemented." % \
                        repr(colors))

                # Set the Lorentz structure. Default for 3-particle
                # vertices is empty string, for 4-particle pair of
                # empty strings
                myinter.set('lorentz', [''])

                pdg_codes = sorted([part.get_pdg_code() for part in part_list])

                # WWWW and WWVV
                if pdg_codes == [-24, -24, 24, 24]:
                    myinter.set('lorentz', ['WWWW'])
                elif spin_array == [3, 3, 3, 3] and \
                             24 in pdg_codes and - 24 in pdg_codes:
                    myinter.set('lorentz', ['WWVV'])

                # gggg
                if pdg_codes == [21, 21, 21, 21]:
                    myinter.set('lorentz', ['gggg1', 'gggg2', 'gggg3'])

                # go-go-g
                # Using the special fvigox routine provides the minus
                # sign necessary for octet Majorana-vector interactions
                if spin_array == [2, 2, 3] and colors == [8, 8, 8] and \
                   part_list[0].get('self_antipart') and \
                   part_list[1].get('self_antipart'):
                    myinter.set('lorentz', ['go'])

                # If extra flag, add this to Lorentz
                if len(values) > 3 * len(part_list) - 4:
                    myinter.get('lorentz')[0] = \
                                      myinter.get('lorentz')[0]\
                                      + values[3 * len(part_list) - 4].upper()

                # Use the other strings to fill variable names and tags

                # Couplings: special treatment for 4-vertices, where MG4 used
                # two couplings, while MG5 only uses one (with the exception
                # of the 4g vertex, which needs special treatment)
                # DUM0 and DUM1 are used as placeholders by FR, corresponds to 1
                if len(part_list) == 3 or \
                   values[len(part_list) + 1] in ['DUM', 'DUM0', 'DUM1']:
                    # We can just use the first coupling, since the second
                    # is a dummy
                    myinter.set('couplings', {(0, 0): values[len(part_list)]})
                    if myinter.get('lorentz')[0] == 'WWWWN':
                        # Should only use one Helas amplitude for electroweak
                        # 4-vector vertices with FR. I choose W3W3NX.
                        myinter.set('lorentz', ['WWVVN'])
                elif values[len(part_list)] in ['DUM', 'DUM0', 'DUM1']:
                    # We can just use the second coupling, since the first
                    # is a dummy
                    myinter.set('couplings',
                                {(0, 0): values[len(part_list) + 1]})
                elif pdg_codes == [21, 21, 21, 21]:
                    # gggg
                    myinter.set(
                        'couplings', {
                            (0, 0): values[len(part_list)],
                            (1, 1): values[len(part_list)],
                            (2, 2): values[len(part_list)]
                        })
                elif myinter.get('lorentz')[0] == 'WWWW':
                    # Need special treatment of v4 SM WWWW couplings since
                    # MG5 can only have one coupling per Lorentz structure
                    myinter.set('couplings', {(0, 0):\
                                              'sqrt(' +
                                              values[len(part_list)] + \
                                             '**2+' + \
                                              values[len(part_list) + 1] + \
                                              '**2)'})
                else:  #if myinter.get('lorentz')[0] == 'WWVV':
                    # Need special treatment of v4 SM WWVV couplings since
                    # MG5 can only have one coupling per Lorentz structure
                    myinter.set('couplings', {(0, 0):values[len(part_list)] + \
                                             '*' + \
                                              values[len(part_list) + 1]})
                    #raise Interaction.PhysicsObjectError, \
                    #    "Only FR-style 4-vertices implemented."

                # SPECIAL TREATMENT OF COLOR
                # g g sq sq (two different color structures, same Lorentz)
                if spin_array == [3, 3, 1, 1] and colors == [-3, 3, 8, 8]:
                    myinter.set(
                        'couplings', {
                            (0, 0): values[len(part_list)],
                            (1, 0): values[len(part_list)]
                        })

                # Coupling orders - needs to be fixed
                order_list = values[2 * len(part_list) - 2: \
                                    3 * len(part_list) - 4]

                def count_duplicates_in_list(dupedlist):
                    """return a dictionary with key the element of dupeList and
                    with value the number of times that they are in this list"""
                    unique_set = set(item for item in dupedlist)
                    ret_dict = {}
                    for item in unique_set:
                        ret_dict[item] = dupedlist.count(item)
                    return ret_dict

                myinter.set('orders', count_duplicates_in_list(order_list))

                myinter.set('id', len(myinterlist) + 1)

                myinterlist.append(myinter)

            except Interaction.PhysicsObjectError, why:
                logger.error("Interaction ignored: %s" % why)
Example #25
0
    def setUp(self):
        # A gluon
        self.mypartlist.append(
            base_objects.Particle({
                'name': 'g',
                'antiname': 'g',
                'spin': 3,
                'color': 8,
                'mass': 'zero',
                'width': 'zero',
                'texname': 'g',
                'antitexname': 'g',
                'line': 'curly',
                'charge': 0.,
                'pdg_code': 21,
                'propagating': True,
                'is_part': True,
                'self_antipart': True
            }))

        # A quark U and its antiparticle
        self.mypartlist.append(
            base_objects.Particle({
                'name': 'u',
                'antiname': 'u~',
                'spin': 2,
                'color': 3,
                'mass': 'zero',
                'width': 'zero',
                'texname': 'u',
                'antitexname': '\bar u',
                'line': 'straight',
                'charge': 2. / 3.,
                'pdg_code': 2,
                'propagating': True,
                'is_part': True,
                'self_antipart': False
            }))
        antiu = copy.copy(self.mypartlist[1])
        antiu.set('is_part', False)

        # A quark D and its antiparticle
        self.mypartlist.append(
            base_objects.Particle({
                'name': 'd',
                'antiname': 'd~',
                'spin': 2,
                'color': 3,
                'mass': 'zero',
                'width': 'zero',
                'texname': 'u',
                'antitexname': '\bar u',
                'line': 'straight',
                'charge': -1. / 3.,
                'pdg_code': 1,
                'propagating': True,
                'is_part': True,
                'self_antipart': False
            }))
        antid = copy.copy(self.mypartlist[2])
        antid.set('is_part', False)

        # 3 gluon vertiex
        self.myinterlist.append(base_objects.Interaction({
                      'id': 1,
                      'particles': base_objects.ParticleList(\
                                            [self.mypartlist[0]] * 3),
                      'color': [color.ColorString([color.f(0, 1, 2)])],
                      'lorentz':['L1'],
                      'couplings':{(0, 0):'G'},
                      'orders':{'QCD':1}}))

        # 4 gluon vertex
        self.myinterlist.append(base_objects.Interaction({
                      'id': 2,
                      'particles': base_objects.ParticleList(\
                                            [self.mypartlist[0]] * 4),
                      'color': [color.ColorString([color.f(-1, 0, 2),
                                                   color.f(-1, 1, 3)]),
                                color.ColorString([color.f(-1, 0, 3),
                                                   color.f(-1, 1, 2)]),
                                color.ColorString([color.f(-1, 0, 1),
                                                   color.f(-1, 2, 3)])],
                      'lorentz':['L(p1,p2,p3)', 'L(p2,p3,p1)', 'L3'],
                      'couplings':{(0, 0):'G^2',
                                   (1, 1):'G^2',
                                   (2, 2):'G^2'},
                      'orders':{'QCD':2}}))

        # Gluon couplings to up and down quarks
        self.myinterlist.append(base_objects.Interaction({
                      'id': 3,
                      'particles': base_objects.ParticleList(\
                                            [self.mypartlist[1], \
                                             antiu, \
                                             self.mypartlist[0]]),
                      'color': [color.ColorString([color.T(2, 0, 1)])],
                      'lorentz':['L1'],
                      'couplings':{(0, 0):'GQQ'},
                      'orders':{'QCD':1}}))

        self.myinterlist.append(base_objects.Interaction({
                      'id': 4,
                      'particles': base_objects.ParticleList(\
                                            [self.mypartlist[2], \
                                             antid, \
                                             self.mypartlist[0]]),
                      'color': [color.ColorString([color.T(2, 0, 1)])],
                      'lorentz':['L1'],
                      'couplings':{(0, 0):'GQQ'},
                      'orders':{'QCD':1}}))

        self.mymodel.set('particles', self.mypartlist)
        self.mymodel.set('interactions', self.myinterlist)