def testInternalBias(self): batch_size = 4 num_hidden = 6 num_dims = 8 test_inputs = tf.random_normal(shape=(batch_size, num_dims)) nade = Nade(num_dims, num_hidden, internal_bias=True) log_prob, cond_probs = nade.log_prob(test_inputs) sample, sample_prob = nade.sample(n=batch_size) with self.test_session() as sess: sess.run([tf.global_variables_initializer()]) self.assertEqual(log_prob.eval().shape, (batch_size, )) self.assertEqual(cond_probs.eval().shape, (batch_size, num_dims)) self.assertEqual(sample.eval().shape, (batch_size, num_dims)) self.assertEqual(sample_prob.eval().shape, (batch_size, ))
def testInternalBias(self): batch_size = 4 num_hidden = 6 num_dims = 8 test_inputs = tf.random_normal(shape=(batch_size, num_dims)) nade = Nade(num_dims, num_hidden, internal_bias=True) log_prob, cond_probs = nade.log_prob(test_inputs) sample, sample_prob = nade.sample(n=batch_size) with self.test_session() as sess: sess.run([tf.global_variables_initializer()]) self.assertEqual(log_prob.eval().shape, (batch_size,)) self.assertEqual(cond_probs.eval().shape, (batch_size, num_dims)) self.assertEqual(sample.eval().shape, (batch_size, num_dims)) self.assertEqual(sample_prob.eval().shape, (batch_size,))