def test_dist(self): # dist = self.data.dist_matrix() # assert isinstance(dist, matplotlib.figure.Figure) copy_data = self.data.copy() copy_data.remove_redundant(level='sample', verbose=False, inplace=True) copy_data.dist_matrix() copy_data.heatmap(convert_to_log=True, index='term_name', columns='sample_id', figsize=(6, 14), annotate_sig=True, linewidths=.01, cluster_row=True) plt.close() dist = self.data.dist_matrix(figsize=(3, 3), level='each') ok_(isinstance(dist, matplotlib.figure.Figure)) plt.close() df = load_data( os.path.join(os.path.dirname(__file__), 'Data', 'example_apoptosis.csv')) terms = [{'BAX'}, {'PARP4'}] heatmap_by_terms(df.species, ['1', '2'], terms) plt.close()
import os from magine.data.experimental_data import load_data file_path = os.path.join(os.path.dirname(__file__), 'Data', 'norris_et_al_2017_cisplatin_data.csv.gz') exp_data = load_data(file_path, low_memory=False)
import os from magine.data.experimental_data import load_data # location of data file file_path = os.path.join(os.path.dirname(__file__), 'Data', 'bendamustine_data.csv.gz') """ This loads the ExperimentalData Class instance. You can load it into any file with the line 'from exp_data import exp_data' """ exp_data = load_data(file_path, low_memory=False, index_col=0)
def setUp(self): self._dir = os.path.join(os.path.dirname(__file__), 'Data') self.exp_data = load_data( os.path.join(self._dir, 'example_apoptosis.csv') ) self.out_dir = tempfile.mkdtemp()
import os from magine.data.experimental_data import load_data data_dir = os.path.dirname(__file__) exp_data = load_data( os.path.join(os.path.join(data_dir, 'Data'), 'example_apoptosis.csv'))