def make_labels_level_img(img_path, level, prefix=None, show=False): """Replace labels in an image with their parents at the given level. Labels that do not fall within a parent at that level will remain in place. Args: img_path: Path to the base image from which the corresponding registered image will be found. level: Ontological level at which to group child labels. prefix: Start of path for output image; defaults to None to use ``img_path`` instead. show: True to show the images after generating them; defaults to False. """ # load original labels image and setup ontology dictionary labels_sitk = sitk_io.load_registered_img(img_path, config.RegNames.IMG_LABELS.value, get_sitk=True) labels_np = sitk.GetArrayFromImage(labels_sitk) ref = ontology.load_labels_ref(config.load_labels) labels_ref_lookup = ontology.create_aba_reverse_lookup(ref) ids = list(labels_ref_lookup.keys()) for key in ids: keys = [key, -1 * key] for region in keys: if region == 0: continue # get ontological label label = labels_ref_lookup[abs(region)] label_level = label[ontology.NODE][config.ABAKeys.LEVEL.value] if label_level == level: # get children (including parent first) at given level # and replace them with parent label_ids = ontology.get_children_from_id( labels_ref_lookup, region) labels_region = np.isin(labels_np, label_ids) print("replacing labels within", region) labels_np[labels_region] = region labels_level_sitk = sitk_io.replace_sitk_with_numpy(labels_sitk, labels_np) # generate an edge image at this level labels_edge = vols.make_labels_edge(labels_np) labels_edge_sikt = sitk_io.replace_sitk_with_numpy(labels_sitk, labels_edge) # write and optionally display labels level image imgs_write = { config.RegNames.IMG_LABELS_LEVEL.value.format(level): labels_level_sitk, config.RegNames.IMG_LABELS_EDGE_LEVEL.value.format(level): labels_edge_sikt, } out_path = prefix if prefix else img_path sitk_io.write_reg_images(imgs_write, out_path) if show: for img in imgs_write.values(): if img: sitk.Show(img)
def plot_region_development(metric, size=None, show=True): """Plot regions across development for the given metric. Args: metric (str): Column name of metric to track. size (List[int]): Sequence of ``width, height`` to size the figure; defaults to None. show (bool): True to display the image; defaults to True. """ # set up access to data frame columns id_cols = ["Age", "Condition"] extra_cols = ["RegionName"] cond_col = "Region" # assume that vol stats file is given first, then region IDs; # merge in region names and levels df_regions = pd.read_csv(config.filenames[1]) df = pd.read_csv(config.filename).merge( df_regions[["Region", "RegionName", "Level"]], on="Region", how="left") # convert sample names to ages ages = ontology.rel_to_abs_ages(df["Sample"].unique()) df["Age"] = df["Sample"].map(ages) # get large super-structures for normalization to brain tissue, where # "non-brain" are spinal cord and ventricles, which are variably labeled df_base = df[df["Region"] == 15564] ids_nonbr_large = (17651, 126651558) dfs_nonbr_large = [df[df["Region"] == n] for n in ids_nonbr_large] # get data frame with region IDs of all non-brain structures removed labels_ref_lookup = ontology.LabelsRef( config.load_labels).load().ref_lookup ids_nonbr = [] for n in ids_nonbr_large: ids_nonbr.extend(ontology.get_children_from_id(labels_ref_lookup, n)) label_id = config.atlas_labels[config.AtlasLabels.ID] if label_id is not None: # show only selected region and its children ids = ontology.get_children_from_id(labels_ref_lookup, label_id) df = df[np.isin(df["Region"], ids)] df_brain = df.loc[~df["Region"].isin(ids_nonbr)] levels = np.sort(df["Level"].unique()) conds = df["Condition"].unique() # get aggregated whole brain tissue for normalization cols_show = (*id_cols, cond_col, *extra_cols, metric) if dfs_nonbr_large: # add all large non-brain structures df_nonbr = dfs_nonbr_large[0] for df_out in dfs_nonbr_large[1:]: df_nonbr = df_io.normalize_df(df_nonbr, id_cols, cond_col, None, [metric], extra_cols, df_out, df_io.df_add) # subtract them from whole organism to get brain tissue alone, # updating given metric in db_base df_base = df_io.normalize_df(df_base, id_cols, cond_col, None, [metric], extra_cols, df_nonbr, df_io.df_subtract) df_base.loc[:, "RegionName"] = "Brain tissue" print("Brain {}:".format(metric)) df_io.print_data_frame(df_base.loc[:, cols_show], "\t") df_base_piv, regions = df_io.pivot_with_conditions(df_base, id_cols, "RegionName", metric) # plot lines with separate styles for each condition and colors for # each region name linestyles = ("--", "-.", ":", "-") num_conds = len(conds) linestyles = linestyles * (num_conds // (len(linestyles) + 1) + 1) if num_conds < len(linestyles): # ensure that 1st and last styles are dashed and solid unless linestyles = (*linestyles[:num_conds - 1], linestyles[-1]) lines_params = { "labels": (metric, "Post-Conceptional Age"), "linestyles": linestyles, "size": size, "show": show, "ignore_invis": True, "groups": conds, "marker": ".", } line_params_norm = lines_params.copy() line_params_norm["labels"] = ("Fraction", "Post-Conceptional Age") plot_2d.plot_lines(config.filename, "Age", regions, title="Whole Brain Development ({})".format(metric), suffix="_dev_{}_brain".format(metric), df=df_base_piv, **lines_params) for level in levels: # plot raw metric at given level df_level = df.loc[df["Level"] == level] print("Raw {}:".format(metric)) df_io.print_data_frame(df_level.loc[:, cols_show], "\t") df_level_piv, regions = df_io.pivot_with_conditions( df_level, id_cols, "RegionName", metric) plot_2d.plot_lines(config.filename, "Age", regions, title="Structure Development ({}, Level {})".format( metric, level), suffix="_dev_{}_level{}".format(metric, level), df=df_level_piv, **lines_params) # plot metric normalized to whole brain tissue; structures # above removed regions will still contain them df_brain_level = df_brain.loc[df_brain["Level"] == level] df_norm = df_io.normalize_df(df_brain_level, id_cols, cond_col, None, [metric], extra_cols, df_base) print("{} normalized to whole brain:".format(metric)) df_io.print_data_frame(df_norm.loc[:, cols_show], "\t") df_norm_piv, regions = df_io.pivot_with_conditions( df_norm, id_cols, "RegionName", metric) plot_2d.plot_lines( config.filename, "Age", regions, units=(None, config.plot_labels[config.PlotLabels.X_UNIT]), title=("Structure Development Normalized to Whole " "Brain ({}, Level {})".format(metric, level)), suffix="_dev_{}_level{}_norm".format(metric, level), df=df_norm_piv, **line_params_norm)