def main(): # read data key_word = 'rare earths' debt_data = pd.read_csv('../Data/%s_google_trend.csv' %key_word,header = 1) nasdaq = pd.read_csv('../Data/nasdaq_historical_quotes.csv',header = 0)[['Date','Open','Close']] # preprocess data preprocess_raw_data = m.preprocessData(debt_data, key_word, nasdaq) # strategy excution trade_data = m.excuteStrategy(preprocess_raw_data,key_word, excute_random_strategy = False) #print trade_data.describe() # process trade result data trade_data = processTradingData(trade_data) # hmm model analyze hmmtest(trade_data, trade_data[['Nasdaq_Close_RDP_5','Strategy_Gross_Return_RDP_5']]) columnName = [] period = [1,2,5,15,30] column = ['Nasdaq_Close','Strategy_Gross_Return','Strategy_Cumulative_Return_R'] for col in column: for i in period: col_name = str('%s_RDP_%s' % (col, str(i))) columnName.append(col_name)
def hmmAnalyze(key_word, result_csv): # Acquiring data fileName = ('../Data/%s_google_trend.csv'%key_word) key_word_data = pd.read_csv(fileName,header = 1) nasdaq = pd.read_csv('../Data/nasdaq_historical_quotes.csv',header = 0)[['Date','Open','Close']] # Processing data preprocess_raw_data = ma.preprocessData(key_word_data,key_word, nasdaq) # add indicator into data for trading strategy trade_data = ma.excuteStrategy(preprocess_raw_data, key_word) # preprocess data trade_data = hmm.processTradingData(trade_data) # hmm model analyze print ('%s is under test' %key_word) result_model = hmm.hmmtest(trade_data, trade_data[['Nasdaq_Close_RDP_5','Strategy_Gross_Return_RDP_5']]) columnName = [] period = [1,2,5,15,30] column = ['Nasdaq_Close','Strategy_Gross_Return','Strategy_Cumulative_Return_R'] for col in column: for i in period: col_name = str('%s_RDP_%s' % (col, str(i))) columnName.append(col_name) outputResult(key_word,result_model, result_csv,trade_data) print('-------------------------')