Example #1
0
def scaleToHist(hists, hRef):

    hTotal = yp.getTotal(hists)

    for hist in hists:
        hist.Divide(hTotal)
        hist.Multiply(hRef)
    mcSamps = ['DY','TTV','SingleT','WJets','TT']
    #mcSamps = ['EWK']

    # update colors
    yp.colorDict["MC_prediction"] = yp.kRed
    yp.colorDict["Data_prediction"] = yp.kRed

    # Category
    cat = "SR_MB_predict"

    # MC samps
    samps = [(samp,cat) for samp in mcSamps]
    mcHists = yp.makeSampHists(yds,samps)

    mcStack = yp.getStack(mcHists)
    hTotal = yp.getTotal(mcHists)

    # for MC closure
    mcsamp = "EWK_poisson"
    mcsamp = "background_poisson_QCDsubtr"
    hMCpred = yp.makeSampHisto(yds,mcsamp,cat,"MC_prediction"); hMCpred.SetTitle("MC (Pred)")

    # DATA
    hDataPred = yp.makeSampHisto(yds,"data_QCDsubtr",cat,"Data_prediction"); hDataPred.SetTitle("Data (Pred)")
    hData = yp.makeSampHisto(yds,"data_QCDsubtr","SR_MB","Data"); hData.SetTitle("Data")

    ## Append Systematics to prediction
    print "Appending syst. unc. to prediction and total MC"
    hDataPred = yp.getHistWithError(hDataPred, hKappaSysts, new = False)
    hTotal = yp.getHistWithError(hTotal, hMCSysts, new = False)
Example #3
0
    #    mcSamps = ["EWK","TTJets","WJets","SingleTop","DY","TTV"]
    #mcSamps = ['TTdiLep','TTsemiLep','WJets','TTV','SingleT','DY']
    mcSamps = ['DY', 'TTV', 'SingleT', 'WJets', 'TTdiLep', 'TTsemiLep']

    cat = "SR_MB"

    #logY = True
    logY = False

    print "Making plot for", cat

    # MC samps
    samps = [(samp, cat) for samp in mcSamps]
    mcHists = yp.makeSampHists(ydsMC, samps)
    hMC = yp.getStack(mcHists)
    hTotal = yp.getTotal(mcHists)

    # Signals

    sighists = []

    masses = []
    mass = "mGo1500_mLSP100"
    massName = "(1500,100)"
    masses.append((mass, massName, yp.kMagenta))
    mass = "mGo1200_mLSP800"
    massName = "(1200,800)"
    masses.append((mass, massName, yp.kBlack))

    for (mass, massName, col) in masses: