def dump_matching_result(fn2, testset_full_path): #外部ファイルに出力する #個々のファイル毎にデータを出力する fn, ext = os.path.splitext(fn2) testcase_full_path = os.path.join(testset_full_path, fn2) imgT = cv2.imread(testcase_full_path, 0) if imgT is None: logger.info('Failed to load fn2:', testcase_full_path) raise ValueError('Not found the file') logger.info("Using Training: {}".format(fn2)) pool = ThreadPool(processes=cv2.getNumberOfCPUs()) with Timer('Detection'): kpT, descT = spla.affine_detect(detector, imgT, pool=pool, simu_param='test') logger.info('imgQ - %d features, imgT - %d features' % (spla.count_keypoints(splt_kpQ), len(kpT))) with Timer('matching'): mesh_pQ, mesh_pT, mesh_pairs = spla.match_with_cross( matcher, splt_descQ, splt_kpQ, descT, kpT) index_mesh_pairs = format4pickle_pairs(mesh_pairs) import joblib dump_match_testcase_dir = myfsys.setup_output_directory(dump_match_dir, fn) joblib.dump(mesh_pQ, os.path.join(dump_match_testcase_dir, 'mesH_pQ.pikle'), compress=True) joblib.dump(mesh_pT, os.path.join(dump_match_testcase_dir, 'mesH_pT.pikle'), compress=True) import pickle with open(os.path.join(dump_match_testcase_dir, 'mesh_pairs.pickle'), 'wb') as f: pickle.dump(index_mesh_pairs, f) f.close() # for i, mesh_pair in enumerate(index_mesh_pairs): # joblib.dump(mesh_pair, os.path.join(dump_detected_testcase_dir, "mesh_pairs_{0:02d}.pikle".format(i)), # compress=True) with Timer('estimation'): Hs, statuses, pairs = spla.calclate_Homography4splitmesh(mesh_pQ, mesh_pT, mesh_pairs, median=median) joblib.dump(Hs, os.path.join(dump_match_testcase_dir, 'Hs.pikle'), compress=True) joblib.dump(statuses, os.path.join(dump_match_testcase_dir, 'statuses.pikle'), compress=True) index_pairs = tuple( tuple((p.pt, p.size, p.angle, p.response, p.octave, p.class_id) for p in pair) for pair in pairs) with open(os.path.join(dump_match_testcase_dir, 'pairs.pickle'), 'wb') as f: pickle.dump(index_pairs, f)
def detect_and_match(detector, matcher, set_fn, splt_num=64, simu_type="default"): """ SplitA実験 set_fn: """ fnQ, testcase, fnT = set_fn def get_expt_names(): tmpf, tmpext = os.path.splitext(fnT) return (os.path.basename(__file__), testcase, tmpf) expt_names = get_expt_names() logger = setup(expt_names) logger.info(__doc__) full_fnQ = myfsys.getf_template((fnQ,)) full_fnT = myfsys.getf_input(testcase, fnT) imgQ, imgT = read_images(full_fnQ, full_fnT, logger) pool = ThreadPool(processes=cv2.getNumberOfCPUs()) with Timer('Detection with SPLIT-ASIFT', logger): splt_kpQ, splt_descQ = spltA.affine_detect_into_mesh(detector, splt_num, imgQ, simu_param=simu_type) with Timer('Detection with SFIT', logger): kpT, descT = affine_detect(detector, imgT, pool=pool, simu_param='test') logger.info('imgQ - {0} features, imgT - {1} features'.format(spltA.count_keypoints(splt_kpQ), len(kpT))) with Timer('matching', logger): mesh_pQ, mesh_pT, mesh_pairs = spltA.match_with_cross(matcher, splt_descQ, splt_kpQ, descT, kpT) Hs = [] statuses = [] kp_pairs_long = [] Hs_stable = [] kp_pairs_long_stable = [] for pQ, pT, pairs in zip(mesh_pQ, mesh_pT, mesh_pairs): pairs, H, status = calclate_Homography(pQ, pT, pairs) Hs.append(H) statuses.append(status) if status is not None and not len(status) == 0 and np.sum(status)/len(status) >= 0.4: Hs_stable.append(H) else: Hs_stable.append(None) for p in pairs: kp_pairs_long.append(p) if status is not None and not len(status) == 0 and np.sum(status)/len(status) >= 0.4: kp_pairs_long_stable.append(p) vis = draw_matches_for_meshes(imgQ, imgT, Hs=Hs) cv2.imwrite(myfsys.getf_output(expt_names, 'meshes.png'), vis) visS = draw_matches_for_meshes(imgQ, imgT, Hs=Hs_stable) cv2.imwrite(myfsys.getf_output(expt_names, 'meshes_stable.png'), visS) viw = explore_match_for_meshes('affine find_obj', imgQ, imgT, kp_pairs_long_stable, Hs=Hs_stable) cv2.imwrite(myfsys.getf_output(expt_names, 'meshes_and_keypoints_stable.png'), viw) return vis, visS, viw
def test_affine_detect_into_mesh(self): with Timer('Detection with split into mesh'): splits_kp, splits_desc = splta2.affine_detect_into_mesh( self.detector, self.splt_num, self.img1, simu_param='test2') self.assertIsNotNone(splits_kp) self.assertIsNotNone(splits_desc) self.assertEqual(len(splits_kp), self.splt_num, "It is not same") self.assertEqual(len(splits_desc), self.splt_num, "It is not same") lenskp = 0 lensdescr = 0 for skp, sdesc in zip(splits_kp, splits_desc): if not skp: self.assertTrue(False, "Keypoints of mesh is Empty") else: self.assertEqual(len(skp), 3, "It is not same") for mesh_kp in skp: lenskp += len(mesh_kp) if not sdesc: self.assertTrue(False, "Descriptors of mesh is Empty") self.assertNotEqual(sdesc[0].size, 0, "Descriptor is Empty") self.assertEqual(sdesc[0].shape[1], 128, "SIFT features") self.assertEqual(len(sdesc), 3, "It is not same") for mesh_desc in sdesc: lensdescr += mesh_desc.shape[0] with Timer('Detection'): kp, desc = affine_detect(self.detector, self.img1, simu_param='test2') kps, descs = splta.affine_detect_into_mesh(self.detector, self.splt_num, self.img1, simu_param='test2') a = splta.count_keypoints(kps) print("{0} == {1}, {2}, {3}".format(lenskp, a, len(kp), lensdescr)) self.assertEqual(lenskp, len(kp), "Some keypoints were droped out.") self.assertEqual(lensdescr, len(desc), "Some descriptors were droped out.") self.assertEqual(lenskp, a, "Some keypoints were droped out.") self.assertEqual(lensdescr, a, "Some descriptors were droped out.")
fn, ext = os.path.splitext(os.path.basename(fn2_full)) testset_name = os.path.basename(os.path.dirname(fn2_full)) imgT = splta.cv2.imread(fn2_full, 0) if imgT is None: print('Failed to load fn2:', fn2_full) sys.exit(1) print("INPUT: {}".format(fn2_full)) pool = splta.ThreadPool(processes=splta.cv2.getNumberOfCPUs()) with splta.Timer('Detection'): kpT, descT = splta.affine_detect(detector, imgT, pool=pool, simu_param='test') print('imgQ - %d features, imgT - %d features' % (splta.count_keypoints(splt_kpQ), len(kpT))) dumped_exdir = "expt_split_affinesim" # dumped_exdir = "expt_split_affinesim_conbine" try: with splta.Timer('Loarding matching pickle'): mesh_pQ, mesh_pT, mesh_pairs = load_pickle_match_with_cross( dumped_exdir, testset_name, fn) # mesh_pQ, mesh_pT, mesh_pairs = splta.match_with_cross(matcher, splt_descQ, splt_kpQ, descT, kpT) except: print('Failed Load matching result') with splta.Timer('matching'): mesh_pQ, mesh_pT, mesh_pairs = splta.match_with_cross( matcher, splt_descQ, splt_kpQ, descT, kpT) try:
template_fn, ext = os.path.splitext(os.path.basename(fn1)) template_information = {"_fn": "tmp.png", "template_img": template_fn, "_cols": 800, "_rows": 600, "_scols": 8, "_srows": 8, "_nneighbor": 4} temp_inf = TmpInf(**template_information) try: with Timer('Lording pickle'): splt_kpQ, splt_descQ = affine_load_into_mesh(template_fn, temp_inf.get_splitnum()) except ValueError as e: print(e) print('If you need to save {} to file as datavase. ¥n' + ' Execute /Users/tiwasaki/PycharmProjects/makedb/make_split_combine_featureDB_from_templates.py') with Timer('Detection and dividing'): splt_kpQ, splt_descQ = affine_detect_into_mesh(detector, temp_inf.get_splitnum(), imgQ, simu_param='default') sk_num = count_keypoints(splt_kpQ) m_skQ, m_sdQ, m_k_num, merged_map = combine_mesh_compact(splt_kpQ, splt_descQ, temp_inf) if not sk_num == count_keypoints(m_skQ) and not count_keypoints(m_skQ) == np.sum(m_k_num): print('{0}, {1}, {2}'.format(sk_num, count_keypoints(m_skQ), np.sum(m_k_num))) sys.exit(1) median = np.nanmedian(m_k_num) list_merged_mesh_id = list(set(np.ravel(merged_map))) pool = ThreadPool(processes=cv2.getNumberOfCPUs()) with Timer('Detection'): kpT, descT = affine_detect(detector, imgT, pool=pool, simu_param='test') with Timer('matching'): mesh_pQ, mesh_pT, mesh_pairs = match_with_cross(matcher, m_sdQ, m_skQ, descT, kpT) # Hs, statuses, pairs = calclate_Homography4splitmesh(mesh_pQ, mesh_pT, mesh_pairs)
detector, matcher = init_feature(feature_name) if detector is None: logger.info('unknown feature:{}'.format(feature_name)) sys.exit(1) split_num = column_num * row_num img_q, splt_kp_q, splt_desc_q = split_asift_detect(detector, fn1, split_num) logger.debug('using {}'.format(feature_name)) img_t, kp_t, desc_t = emod.detect(detector, fn2) print('imgQ - %d features, imgT - %d features' % (saf.count_keypoints(splt_kp_q), len(kp_t))) with Timer('matching'): mesh_pQ, mesh_pT, mesh_pairs = saf.match_with_cross( matcher, splt_desc_q, splt_kp_q, desc_t, kp_t) list_H, statuses, kp_pairs, pairs_on_meshes = calculate_hompgraphy( mesh_pQ, mesh_pT, mesh_pairs) mt_p = pairs_on_meshes[:, :, 0] mt_s = pairs_on_meshes[:, :, 1] mt_m = pairs_on_meshes[:, :, 2] ratio_ps = mt_p / mt_s ratio_pm = mt_p / mt_m logger.info(mt_p) logger.info(mt_s)