def setpara_bdsm(self, img): from types import ClassType, TypeType chain = [ Op_preprocess, Op_rmsimage(), Op_threshold(), Op_islands(), Op_gausfit(), Op_gaul2srl(), Op_make_residimage() ] opts = img.opts.to_dict() if img.opts.pi_thresh_isl != None: opts['thresh_isl'] = img.opts.pi_thresh_isl if img.opts.pi_thresh_pix != None: opts['thresh_pix'] = img.opts.pi_thresh_pix opts['thresh'] = 'hard' opts['polarisation_do'] = False opts['filename'] = '' opts['detection_image'] = '' ops = [] for op in chain: if isinstance(op, (ClassType, TypeType)): ops.append(op()) else: ops.append(op) return ops, opts
def setpara_bdsm(self, img): from types import ClassType, TypeType chain = [ Op_preprocess, Op_rmsimage(), Op_threshold(), Op_islands(), Op_gausfit(), Op_gaul2srl(), Op_make_residimage() ] opts = {'thresh': 'hard'} opts['thresh_pix'] = img.thresh_pix opts['kappa_clip'] = 3.0 opts['rms_map'] = img.opts.rms_map opts['mean_map'] = img.opts.mean_map opts['thresh_isl'] = img.opts.thresh_isl opts['minpix_isl'] = 6 opts['savefits_rmsim'] = False opts['savefits_meanim'] = False opts['savefits_rankim'] = False opts['savefits_normim'] = False opts['polarisation_do'] = False opts['aperture'] = None opts['group_by_isl'] = img.opts.group_by_isl opts['quiet'] = img.opts.quiet opts['ncores'] = img.opts.ncores opts['flag_smallsrc'] = False opts['flag_minsnr'] = 0.2 opts['flag_maxsnr'] = 1.2 opts['flag_maxsize_isl'] = 2.5 opts['flag_bordersize'] = 0 opts['flag_maxsize_bm'] = 50.0 opts['flag_minsize_bm'] = 0.2 opts['flag_maxsize_fwhm'] = 0.5 opts['bbs_patches'] = img.opts.bbs_patches opts['filename'] = '' opts['output_all'] = img.opts.output_all opts['verbose_fitting'] = img.opts.verbose_fitting opts['split_isl'] = False opts['peak_fit'] = True opts['peak_maxsize'] = 30.0 opts['detection_image'] = '' opts['verbose_fitting'] = img.opts.verbose_fitting ops = [] for op in chain: if isinstance(op, (ClassType, TypeType)): ops.append(op()) else: ops.append(op) return ops, opts
def subtract_wvgaus(self, opts, residim, gaussians, islands): import functions as func from make_residimage import Op_make_residimage as opp dummy = opp() shape = residim.shape thresh = opts.fittedimage_clip for g in gaussians: if g.valid: C1, C2 = g.centre_pix if hasattr(g, 'wisland_id'): isl = islands[g.wisland_id] else: isl = islands[g.island_id] b = opp.find_bbox(dummy, thresh * isl.rms, g) bbox = N.s_[max(0, int(C1 - b)):min(shape[0], int(C1 + b + 1)), max(0, int(C2 - b)):min(shape[1], int(C2 + b + 1))] x_ax, y_ax = N.mgrid[bbox] ffimg = func.gaussian_fcn(g, x_ax, y_ax) residim[bbox] = residim[bbox] - ffimg return residim
def __call__(self, img): mylog = mylogger.logging.getLogger("PyBDSM." + img.log + "Wavelet") if img.opts.atrous_do: if img.nisl == 0: mylog.warning( "No islands found. Skipping wavelet decomposition.") img.completed_Ops.append('wavelet_atrous') return mylog.info( "Decomposing gaussian residual image into a-trous wavelets") bdir = img.basedir + '/wavelet/' if img.opts.output_all: if not os.path.isdir(bdir): os.makedirs(bdir) if not os.path.isdir(bdir + '/residual/'): os.makedirs(bdir + '/residual/') if not os.path.isdir(bdir + '/model/'): os.makedirs(bdir + '/model/') dobdsm = img.opts.atrous_bdsm_do filter = { 'tr': { 'size': 3, 'vec': [1. / 4, 1. / 2, 1. / 4], 'name': 'Triangle' }, 'b3': { 'size': 5, 'vec': [1. / 16, 1. / 4, 3. / 8, 1. / 4, 1. / 16], 'name': 'B3 spline' } } if dobdsm: wchain, wopts = self.setpara_bdsm(img) n, m = img.ch0_arr.shape # Calculate residual image that results from normal (non-wavelet) Gaussian fitting Op_make_residimage()(img) resid = img.resid_gaus_arr lpf = img.opts.atrous_lpf if lpf not in ['b3', 'tr']: lpf = 'b3' jmax = img.opts.atrous_jmax l = len(filter[lpf]['vec'] ) # 1st 3 is arbit and 2nd 3 is whats expected for a-trous if jmax < 1 or jmax > 15: # determine jmax # Check if largest island size is # smaller than 1/3 of image size. If so, use it to determine jmax. min_size = min(resid.shape) max_isl_shape = (0, 0) for isl in img.islands: if isl.image.shape[0] * isl.image.shape[1] > max_isl_shape[ 0] * max_isl_shape[1]: max_isl_shape = isl.image.shape if max_isl_shape != ( 0, 0) and min(max_isl_shape) < min(resid.shape) / 3.0: min_size = min(max_isl_shape) * 4.0 else: min_size = min(resid.shape) jmax = int( floor( log((min_size / 3.0 * 3.0 - l) / (l - 1) + 1) / log(2.0) + 1.0)) + 1 if min_size * 0.55 <= (l + (l - 1) * (2**(jmax) - 1)): jmax = jmax - 1 img.wavelet_lpf = lpf img.wavelet_jmax = jmax mylog.info("Using " + filter[lpf]['name'] + ' filter with J_max = ' + str(jmax)) img.atrous_islands = [] img.atrous_gaussians = [] img.atrous_sources = [] img.atrous_opts = [] img.resid_wavelets_arr = cp(img.resid_gaus_arr) im_old = img.resid_wavelets_arr total_flux = 0.0 ntot_wvgaus = 0 stop_wav = False pix_masked = N.where(N.isnan(resid) == True) jmin = 1 if img.opts.ncores is None: numcores = 1 else: numcores = img.opts.ncores for j in range(jmin, jmax + 1): # extra +1 is so we can do bdsm on cJ as well mylogger.userinfo(mylog, "\nWavelet scale #" + str(j)) im_new = self.atrous(im_old, filter[lpf]['vec'], lpf, j, numcores=numcores, use_scipy_fft=img.opts.use_scipy_fft) im_new[ pix_masked] = N.nan # since fftconvolve wont work with blanked pixels if img.opts.atrous_sum: w = im_new else: w = im_old - im_new im_old = im_new suffix = 'w' + ` j ` filename = img.imagename + '.atrous.' + suffix + '.fits' if img.opts.output_all: func.write_image_to_file('fits', filename, w, img, bdir) mylog.info('%s %s' % ('Wrote ', img.imagename + '.atrous.' + suffix + '.fits')) # now do bdsm on each wavelet image. if dobdsm: wopts['filename'] = filename wopts['basedir'] = bdir box = img.rms_box[0] y1 = (l + (l - 1) * (2**(j - 1) - 1)) bs = max(5 * y1, box) # changed from 10 to 5 if bs > min(n, m) / 2: wopts['rms_map'] = False wopts['mean_map'] = 'const' wopts['rms_box'] = None else: wopts['rms_box'] = (bs, bs / 3) if hasattr(img, '_adapt_rms_isl_pos'): bs_bright = max(5 * y1, img.rms_box_bright[0]) if bs_bright < bs / 1.5: wopts['adaptive_rms_box'] = True wopts['rms_box_bright'] = (bs_bright, bs_bright / 3) else: wopts['adaptive_rms_box'] = False if j <= 3: wopts['ini_gausfit'] = 'default' else: wopts['ini_gausfit'] = 'nobeam' wid = (l + (l - 1) * (2**(j - 1) - 1)) # / 3.0 b1, b2 = img.pixel_beam()[0:2] b1 = b1 * fwsig b2 = b2 * fwsig cdelt = img.wcs_obj.acdelt[:2] wimg = Image(wopts) wimg.beam = (sqrt(wid * wid + b1 * b1) * cdelt[0] * 2.0, sqrt(wid * wid + b2 * b2) * cdelt[1] * 2.0, 0.0) wimg.orig_beam = img.beam wimg.pixel_beam = img.pixel_beam wimg.pixel_beamarea = img.pixel_beamarea wimg.log = 'Wavelet.' wimg.basedir = img.basedir wimg.extraparams['bbsprefix'] = suffix wimg.extraparams['bbsname'] = img.imagename + '.wavelet' wimg.extraparams['bbsappend'] = True wimg.bbspatchnum = img.bbspatchnum wimg.waveletimage = True wimg.j = j if hasattr(img, '_adapt_rms_isl_pos'): wimg._adapt_rms_isl_pos = img._adapt_rms_isl_pos self.init_image_simple(wimg, img, w, '.atrous.' + suffix) for op in wchain: op(wimg) gc.collect() if isinstance(op, Op_islands) and img.opts.atrous_orig_isl: if wimg.nisl > 0: # Find islands that do not share any pixels with # islands in original ch0 image. good_isl = [] # Make original rank image boolean; rank counts from 0, with -1 being # outside any island orig_rankim_bool = N.array(img.pyrank + 1, dtype=bool) # Multiply rank images old_islands = orig_rankim_bool * (wimg.pyrank + 1) - 1 # Exclude islands that don't overlap with a ch0 island. valid_ids = set(old_islands.flatten()) for idx, wvisl in enumerate(wimg.islands): if idx in valid_ids: wvisl.valid = True good_isl.append(wvisl) else: wvisl.valid = False wimg.islands = good_isl wimg.nisl = len(good_isl) mylogger.userinfo(mylog, "Number of islands found", '%i' % wimg.nisl) # Renumber islands: for wvindx, wvisl in enumerate(wimg.islands): wvisl.island_id = wvindx if isinstance(op, Op_gausfit): # If opts.atrous_orig_isl then exclude Gaussians outside of # the original ch0 islands nwvgaus = 0 if img.opts.atrous_orig_isl: gaul = wimg.gaussians tot_flux = 0.0 if img.ngaus == 0: gaus_id = -1 else: gaus_id = img.gaussians[-1].gaus_num wvgaul = [] for g in gaul: if not hasattr(g, 'valid'): g.valid = False if not g.valid: try: isl_id = img.pyrank[ int(g.centre_pix[0] + 1), int(g.centre_pix[1] + 1)] except IndexError: isl_id = -1 if isl_id >= 0: isl = img.islands[isl_id] gcenter = (g.centre_pix[0] - isl.origin[0], g.centre_pix[1] - isl.origin[1]) if not isl.mask_active[gcenter]: gaus_id += 1 gcp = Gaussian( img, g.parameters[:], isl.island_id, gaus_id) gcp.gaus_num = gaus_id gcp.wisland_id = g.island_id gcp.jlevel = j g.valid = True isl.gaul.append(gcp) isl.ngaus += 1 img.gaussians.append(gcp) nwvgaus += 1 tot_flux += gcp.total_flux else: g.valid = False g.jlevel = 0 else: g.valid = False g.jlevel = 0 vg = [] for g in wimg.gaussians: if g.valid: vg.append(g) wimg.gaussians = vg mylogger.userinfo( mylog, "Number of valid wavelet Gaussians", str(nwvgaus)) else: # Keep all Gaussians and merge islands that overlap tot_flux = check_islands_for_overlap(img, wimg) # Now renumber the islands and adjust the rank image before going to next wavelet image renumber_islands(img) total_flux += tot_flux if img.opts.interactive and has_pl: dc = '\033[34;1m' nc = '\033[0m' print dc + '--> Displaying islands and rms image...' + nc if max(wimg.ch0_arr.shape) > 4096: print dc + '--> Image is large. Showing islands only.' + nc wimg.show_fit(rms_image=False, mean_image=False, ch0_image=False, ch0_islands=True, gresid_image=False, sresid_image=False, gmodel_image=False, smodel_image=False, pyramid_srcs=False) else: wimg.show_fit() prompt = dc + "Press enter to continue or 'q' stop fitting wavelet images : " + nc answ = raw_input_no_history(prompt) while answ != '': if answ == 'q': img.wavelet_jmax = j stop_wav = True break answ = raw_input_no_history(prompt) if len(wimg.gaussians) > 0: img.resid_wavelets_arr = self.subtract_wvgaus( img.opts, img.resid_wavelets_arr, wimg.gaussians, wimg.islands) if img.opts.atrous_sum: im_old = self.subtract_wvgaus( img.opts, im_old, wimg.gaussians, wimg.islands) if stop_wav == True: break pyrank = N.zeros(img.pyrank.shape, dtype=N.int32) for i, isl in enumerate(img.islands): isl.island_id = i for g in isl.gaul: g.island_id = i for dg in isl.dgaul: dg.island_id = i pyrank[isl.bbox] += N.invert(isl.mask_active) * (i + 1) pyrank -= 1 # align pyrank values with island ids and set regions outside of islands to -1 img.pyrank = pyrank pdir = img.basedir + '/misc/' img.ngaus += ntot_wvgaus img.total_flux_gaus += total_flux mylogger.userinfo(mylog, "Total flux density in model on all scales", '%.3f Jy' % img.total_flux_gaus) if img.opts.output_all: func.write_image_to_file('fits', img.imagename + '.atrous.cJ.fits', im_new, img, bdir) mylog.info('%s %s' % ('Wrote ', img.imagename + '.atrous.cJ.fits')) func.write_image_to_file( 'fits', img.imagename + '.resid_wavelets.fits', (img.ch0_arr - img.resid_gaus_arr + img.resid_wavelets_arr), img, bdir + '/residual/') mylog.info('%s %s' % ('Wrote ', img.imagename + '.resid_wavelets.fits')) func.write_image_to_file( 'fits', img.imagename + '.model_wavelets.fits', (img.resid_gaus_arr - img.resid_wavelets_arr), img, bdir + '/model/') mylog.info('%s %s' % ('Wrote ', img.imagename + '.model_wavelets.fits')) img.completed_Ops.append('wavelet_atrous')
from _version import __version__ import gc default_chain = [Op_readimage(), Op_collapse(), Op_preprocess(), Op_rmsimage(), Op_threshold(), Op_islands(), Op_gausfit(), Op_wavelet_atrous(), Op_shapelets(), Op_gaul2srl(), Op_spectralindex(), Op_polarisation(), Op_make_residimage(), Op_psf_vary(), Op_outlist(), Op_cleanup() ] fits_chain = default_chain # for legacy scripts def execute(chain, opts): """Execute chain. Create new Image with given options and apply chain of operations to it. The opts input must be a dictionary. """ from image import Image import mylogger