def model_fn(features, labels, mode, params):
    conformer_model = conformer.Model(
        kernel_regularizer = None, bias_regularizer = None, **config
    )
    decoder_config = malaya_speech.config.conformer_base_decoder_config
    transducer_model = transducer.rnn.Model(
        conformer_model, vocabulary_size = subwords.vocab_size, **decoder_config
    )
    v = tf.expand_dims(features['inputs'], -1)
    z = tf.zeros((tf.shape(features['targets'])[0], 1), dtype = tf.int64)
    c = tf.concat([z, features['targets']], axis = 1)

    logits = transducer_model([v, c], training = True)

    cost = transducer.loss.rnnt_loss(
        logits = logits,
        labels = features['targets'],
        label_length = features['targets_length'][:, 0],
        logit_length = features['inputs_length'][:, 0]
        // conformer_model.conv_subsampling.time_reduction_factor,
    )
    mean_error = tf.reduce_mean(cost)

    loss = mean_error

    tf.identity(loss, 'train_loss')

    variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)

    init_checkpoint = 'asr-base-conformer-transducer/model.ckpt-150000'

    assignment_map, initialized_variable_names = train.get_assignment_map_from_checkpoint(
        variables, init_checkpoint
    )

    tf.train.init_from_checkpoint(init_checkpoint, assignment_map)

    if mode == tf.estimator.ModeKeys.TRAIN:
        train_op = train.optimizer.optimize_loss(
            loss,
            tf.train.AdamOptimizer,
            parameters['optimizer_params'],
            learning_rate_scheduler,
            summaries = ['learning_rate', 'loss_scale'],
            larc_params = parameters.get('larc_params', None),
            loss_scaling = parameters.get('loss_scaling', 1.0),
            loss_scaling_params = parameters.get('loss_scaling_params', None),
        )
        estimator_spec = tf.estimator.EstimatorSpec(
            mode = mode, loss = loss, train_op = train_op
        )

    elif mode == tf.estimator.ModeKeys.EVAL:

        estimator_spec = tf.estimator.EstimatorSpec(
            mode = tf.estimator.ModeKeys.EVAL, loss = loss
        )

    return estimator_spec
def model_fn(features, labels, mode, params):
    learning_rate = 1e-5
    init_checkpoint = '../deep-speaker/out/vggvox.ckpt'
    Y = tf.cast(features['targets'][:, 0], tf.int32)

    model = deep_speaker.model.Model(
        features['inputs'], num_class = 10, mode = 'train'
    )
    logits = model.logits

    loss = tf.reduce_mean(
        tf.nn.sparse_softmax_cross_entropy_with_logits(
            logits = logits, labels = Y
        )
    )

    tf.identity(loss, 'train_loss')

    accuracy = tf.metrics.accuracy(
        labels = Y, predictions = tf.argmax(logits, axis = 1)
    )

    tf.identity(accuracy[1], name = 'train_accuracy')

    variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
    variables = [v for v in variables if 'prediction' not in v.name]

    assignment_map, initialized_variable_names = train.get_assignment_map_from_checkpoint(
        variables, init_checkpoint
    )

    tf.train.init_from_checkpoint(init_checkpoint, assignment_map)

    if mode == tf.estimator.ModeKeys.TRAIN:
        global_step = tf.train.get_or_create_global_step()
        optimizer = tf.train.AdamOptimizer(learning_rate)
        train_op = optimizer.minimize(loss, global_step = global_step)
        estimator_spec = tf.estimator.EstimatorSpec(
            mode = mode, loss = loss, train_op = train_op
        )

    elif mode == tf.estimator.ModeKeys.EVAL:

        estimator_spec = tf.estimator.EstimatorSpec(
            mode = tf.estimator.ModeKeys.EVAL,
            loss = loss,
            eval_metric_ops = {'accuracy': accuracy},
        )

    return estimator_spec
Example #3
0
def model_fn(features, labels, mode, params):
    model = Model(features['combined'], [features['y'], features['noise']])
    loss = model.cost

    tf.identity(loss, 'total_loss')
    tf.summary.scalar('total_loss', loss)
    for i in range(len(model.loss)):
        tf.identity(model.loss[i], f'loss_{i}')
        tf.summary.scalar(f'loss_{i}', model.loss[i])

    global_step = tf.train.get_or_create_global_step()

    variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
    assignment_map, initialized_variable_names = train.get_assignment_map_from_checkpoint(
        variables, init_checkpoint)

    tf.train.init_from_checkpoint(init_checkpoint, assignment_map)

    learning_rate = tf.constant(value=init_lr, shape=[], dtype=tf.float32)
    learning_rate = tf.train.polynomial_decay(
        learning_rate,
        global_step,
        epochs,
        end_learning_rate=1e-7,
        power=1.0,
        cycle=False,
    )
    tf.summary.scalar('learning_rate', learning_rate)

    if mode == tf.estimator.ModeKeys.TRAIN:

        optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)

        train_op = optimizer.minimize(loss, global_step=global_step)
        estimator_spec = tf.estimator.EstimatorSpec(mode=mode,
                                                    loss=loss,
                                                    train_op=train_op)

    elif mode == tf.estimator.ModeKeys.EVAL:

        estimator_spec = tf.estimator.EstimatorSpec(
            mode=tf.estimator.ModeKeys.EVAL, loss=loss)

    return estimator_spec