) estimator_spec = tf.estimator.EstimatorSpec( mode = mode, loss = loss, train_op = train_op ) elif mode == tf.estimator.ModeKeys.EVAL: estimator_spec = tf.estimator.EstimatorSpec( mode = tf.estimator.ModeKeys.EVAL, loss = loss ) return estimator_spec train_hooks = [tf.train.LoggingTensorHook(['total_loss'], every_n_iter = 1)] train_dataset = get_dataset() save_directory = 'speaker-split-fast-swave' train.run_training( train_fn = train_dataset, model_fn = model_fn, model_dir = save_directory, num_gpus = 1, log_step = 1, save_checkpoint_step = 3000, max_steps = total_steps, train_hooks = train_hooks, eval_step = 0, )
return estimator_spec train_hooks = [ tf.train.LoggingTensorHook( [ 'loss', 'duration_loss', 'mel_loss_before', 'mel_loss_after', 'energies_loss', 'f0s_loss', ], every_n_iter=1, ) ] train_dataset = get_dataset(files) train.run_training( train_fn=train_dataset, model_fn=model_fn, model_dir='fastspeech2-husein-v2', num_gpus=1, log_step=1, save_checkpoint_step=2000, max_steps=total_steps, eval_fn=None, train_hooks=train_hooks, )
elif mode == tf.estimator.ModeKeys.EVAL: estimator_spec = tf.estimator.EstimatorSpec( mode=tf.estimator.ModeKeys.EVAL, loss=loss, eval_metric_ops={'accuracy': accuracy}, ) return estimator_spec train_hooks = [ tf.train.LoggingTensorHook(['train_accuracy', 'train_loss'], every_n_iter=1) ] train_dataset = get_dataset() save_directory = 'output-speakernet-speaker-count' train.run_training( train_fn=train_dataset, model_fn=model_fn, model_dir=save_directory, num_gpus=1, log_step=1, save_checkpoint_step=25000, max_steps=300_000, train_hooks=train_hooks, )
loss = loss, eval_metric_ops = { 'accuracy': ctc.metrics.ctc_sequence_accuracy_estimator( logits, targets_int32, seq_lens ) }, ) return estimator_spec train_hooks = [ tf.train.LoggingTensorHook( ['train_accuracy', 'train_loss'], every_n_iter = 1 ) ] train_dataset = get_dataset('training-librispeech/data/librispeech-train-*') dev_dataset = get_dataset('training-librispeech/data/librispeech-dev-*') train.run_training( train_fn = train_dataset, model_fn = model_fn, model_dir = 'asr-quartznet-librispeech-adam', num_gpus = 2, log_step = 1, save_checkpoint_step = parameters['lr_policy_params']['warmup_steps'], max_steps = parameters['lr_policy_params']['decay_steps'], eval_fn = dev_dataset, train_hooks = train_hooks, )
return estimator_spec train_hooks = [ tf.train.LoggingTensorHook( [ 'loss', 'stop_token_loss', 'mel_loss_before', 'mel_loss_after', 'loss_att', ], every_n_iter = 1, ) ] train_dataset = get_dataset(files['train']) dev_dataset = get_dataset(files['test']) train.run_training( train_fn = train_dataset, model_fn = model_fn, model_dir = 'tacotron2-female-3', num_gpus = 1, log_step = 1, save_checkpoint_step = 5000, max_steps = num_train_steps, eval_fn = dev_dataset, train_hooks = train_hooks, )
) elif mode == tf.estimator.ModeKeys.EVAL: estimator_spec = tf.estimator.EstimatorSpec( mode = tf.estimator.ModeKeys.EVAL, loss = loss ) return estimator_spec train_hooks = [tf.train.LoggingTensorHook(['train_loss'], every_n_iter = 1)] train_dataset = get_dataset( '../speech-bahasa/bahasa-asr/data/bahasa-asr-train-*' ) dev_dataset = get_dataset( '../speech-bahasa/bahasa-asr-test/data/bahasa-asr-dev-*' ) train.run_training( train_fn = train_dataset, model_fn = model_fn, model_dir = 'asr-base-conformer-transducer', num_gpus = 2, log_step = 1, save_checkpoint_step = 5000, max_steps = 500_000, eval_fn = dev_dataset, train_hooks = train_hooks, )
return estimator_spec train_hooks = [ tf.train.LoggingTensorHook( [ 'loss', 'stop_token_loss', 'mel_loss_before', 'mel_loss_after', 'loss_att', ], every_n_iter = 1, ) ] train_dataset = get_dataset(files) train.run_training( train_fn = train_dataset, model_fn = model_fn, model_dir = 'tacotron2-case-haqkiem', num_gpus = 1, log_step = 1, save_checkpoint_step = 2000, max_steps = 100000, eval_fn = None, train_hooks = train_hooks, )
eval_metric_ops={ 'accuracy': ctc.metrics.ctc_sequence_accuracy_estimator( logits, targets_int32, seq_lens) }, ) return estimator_spec train_hooks = [ tf.train.LoggingTensorHook(['train_accuracy', 'train_loss'], every_n_iter=1) ] train_dataset = get_dataset( '../speech-bahasa/bahasa-asr/data/bahasa-asr-train-*') dev_dataset = get_dataset( '../speech-bahasa/bahasa-asr-test/data/bahasa-asr-dev-*') train.run_training( train_fn=train_dataset, model_fn=model_fn, model_dir='asr-mini-jasper-ctc', num_gpus=2, log_step=1, save_checkpoint_step=5000, max_steps=parameters['lr_policy_params']['decay_steps'], eval_fn=dev_dataset, train_hooks=train_hooks, )
) return estimator_spec train_hooks = [ tf.train.LoggingTensorHook( ['train_accuracy', 'train_loss'], every_n_iter = 1 ) ] train_files = glob('vad2/data/vad-train-*') + glob('noise/data/vad-train-*') train_dataset = get_dataset(train_files, batch_size = 32) dev_files = glob('vad2/data/vad-dev-*') + glob('noise/data/vad-dev-*') dev_dataset = get_dataset(dev_files, batch_size = 16) save_directory = 'output-inception-v4-vad' train.run_training( train_fn = train_dataset, model_fn = model_fn, model_dir = save_directory, num_gpus = 1, log_step = 1, save_checkpoint_step = 25000, max_steps = epochs, eval_fn = dev_dataset, train_hooks = train_hooks, )