Example #1
0
def train_pie(args, dataset, model, simulator):
    """ PIE training """

    trainer = ManifoldFlowTrainer(model) if simulator.parameter_dim(
    ) is None else ConditionalManifoldFlowTrainer(model)
    logger.info("Starting training PIE on NLL")
    common_kwargs = {
        "dataset": dataset,
        "batch_size": args.batchsize,
        "initial_lr": args.lr,
        "scheduler": optim.lr_scheduler.CosineAnnealingLR,
        "clip_gradient": args.clip,
    }
    if args.weightdecay is not None:
        common_kwargs["optimizer_kwargs"] = {
            "weight_decay": float(args.weightdecay)
        }

    learning_curves = trainer.train(
        loss_functions=[losses.nll],
        loss_labels=["NLL"],
        loss_weights=[args.nllfactor],
        epochs=args.epochs,
        callbacks=[
            callbacks.save_model_after_every_epoch(
                create_filename("checkpoint", None, args)[:-3] +
                "_epoch_{}.pt")
        ],
        forward_kwargs={"mode": "pie"},
        **common_kwargs,
    )
    learning_curves = np.vstack(learning_curves).T
    return learning_curves
Example #2
0
def train_manifold_flow_alternating(args, dataset, model, simulator):
    """ MFMF-A training """

    assert not args.specified

    trainer = ManifoldFlowTrainer(model) if simulator.parameter_dim(
    ) is None else ConditionalManifoldFlowTrainer(model)
    metatrainer = AlternatingTrainer(model, trainer, trainer)

    meta_kwargs = {
        "dataset": dataset,
        "initial_lr": args.lr,
        "scheduler": optim.lr_scheduler.CosineAnnealingLR
    }
    if args.weightdecay is not None:
        meta_kwargs["optimizer_kwargs"] = {
            "weight_decay": float(args.weightdecay)
        }

    phase1_kwargs = {
        "forward_kwargs": {
            "mode": "projection"
        },
        "clip_gradient": args.clip
    }
    phase2_kwargs = {
        "forward_kwargs": {
            "mode": "mf-fixed-manifold"
        },
        "clip_gradient": args.clip
    }

    phase1_parameters = (list(model.outer_transform.parameters()) +
                         list(model.encoder.parameters()) if args.algorithm
                         == "emf" else model.outer_transform.parameters())
    phase2_parameters = model.inner_transform.parameters()

    logger.info(
        "Starting training MF, alternating between reconstruction error and log likelihood"
    )
    learning_curves_ = metatrainer.train(
        loss_functions=[losses.mse, losses.nll],
        loss_function_trainers=[0, 1],
        loss_labels=["MSE", "NLL"],
        loss_weights=[args.msefactor, args.nllfactor],
        epochs=args.epochs // 2,
        subsets=args.subsets,
        batch_sizes=[args.batchsize, args.batchsize],
        parameters=[phase1_parameters, phase2_parameters],
        callbacks=[
            callbacks.save_model_after_every_epoch(
                create_filename("checkpoint", None, args)[:-3] +
                "_epoch_{}.pt")
        ],
        trainer_kwargs=[phase1_kwargs, phase2_kwargs],
        **meta_kwargs,
    )
    learning_curves = np.vstack(learning_curves_).T

    return learning_curves
Example #3
0
def train_manifold_flow_sequential(args, dataset, model, simulator):
    """ MFMF-A training """

    assert not args.specified

    trainer = ManifoldFlowTrainer(model) if simulator.parameter_dim(
    ) is None else ConditionalManifoldFlowTrainer(model)

    common_kwargs = {
        "dataset": dataset,
        "batch_size": args.batchsize,
        "initial_lr": args.lr,
        "scheduler": optim.lr_scheduler.CosineAnnealingLR,
        "clip_gradient": args.clip,
    }
    if args.weightdecay is not None:
        common_kwargs["optimizer_kwargs"] = {
            "weight_decay": float(args.weightdecay)
        }

    logger.info("Starting training MF, phase 1: manifold training")
    learning_curves = trainer.train(
        loss_functions=[losses.mse],
        loss_labels=["MSE"],
        loss_weights=[args.msefactor],
        epochs=args.epochs // 2,
        parameters=list(model.outer_transform.parameters()) +
        list(model.encoder.parameters())
        if args.algorithm == "emf" else model.outer_transform.parameters(),
        callbacks=[
            callbacks.save_model_after_every_epoch(
                create_filename("checkpoint", None, args)[:-3] +
                "_epoch_A{}.pt")
        ],
        forward_kwargs={"mode": "projection"},
        **common_kwargs,
    )
    learning_curves = np.vstack(learning_curves).T

    logger.info("Starting training MF, phase 2: density training")
    learning_curves_ = trainer.train(
        loss_functions=[losses.nll],
        loss_labels=["NLL"],
        loss_weights=[args.nllfactor],
        epochs=args.epochs - (args.epochs // 2),
        parameters=model.inner_transform.parameters(),
        callbacks=[
            callbacks.save_model_after_every_epoch(
                create_filename("checkpoint", None, args)[:-3] +
                "_epoch_B{}.pt")
        ],
        forward_kwargs={"mode": "mf-fixed-manifold"},
        **common_kwargs,
    )
    learning_curves_ = np.vstack(learning_curves_).T
    learning_curves = learning_curves_ if learning_curves is None else np.vstack(
        (learning_curves, learning_curves_))

    return learning_curves
Example #4
0
def train_generative_adversarial_manifold_flow_alternating(
        args, dataset, model, simulator):
    """ MFMF-OTA training """

    assert not args.specified

    gen_trainer = GenerativeTrainer(model) if simulator.parameter_dim(
    ) is None else ConditionalGenerativeTrainer(model)
    likelihood_trainer = ManifoldFlowTrainer(model) if simulator.parameter_dim(
    ) is None else ConditionalManifoldFlowTrainer(model)
    metatrainer = AlternatingTrainer(model, gen_trainer, likelihood_trainer)

    meta_kwargs = {
        "dataset": dataset,
        "initial_lr": args.lr,
        "scheduler": optim.lr_scheduler.CosineAnnealingLR
    }
    if args.weightdecay is not None:
        meta_kwargs["optimizer_kwargs"] = {
            "weight_decay": float(args.weightdecay)
        }

    phase1_kwargs = {"clip_gradient": args.clip}
    phase2_kwargs = {
        "forward_kwargs": {
            "mode": "mf-fixed-manifold"
        },
        "clip_gradient": args.clip
    }

    phase1_parameters = model.parameters()
    phase2_parameters = model.inner_transform.parameters()

    logger.info(
        "Starting training GAMF, alternating between Sinkhorn divergence and log likelihood"
    )
    learning_curves_ = metatrainer.train(
        loss_functions=[losses.make_sinkhorn_divergence(), losses.nll],
        loss_function_trainers=[0, 1],
        loss_labels=["GED", "NLL"],
        loss_weights=[args.sinkhornfactor, args.nllfactor],
        batch_sizes=[args.genbatchsize, args.batchsize],
        epochs=args.epochs // 2,
        parameters=[phase1_parameters, phase2_parameters],
        callbacks=[
            callbacks.save_model_after_every_epoch(
                create_filename("checkpoint", None, args)[:-3] +
                "_epoch_{}.pt")
        ],
        trainer_kwargs=[phase1_kwargs, phase2_kwargs],
        subsets=args.subsets,
        subset_callbacks=[callbacks.print_mf_weight_statistics()]
        if args.debug else None,
        **meta_kwargs,
    )
    learning_curves = np.vstack(learning_curves_).T

    return learning_curves
Example #5
0
def train_slice_of_pie(args, dataset, model, simulator):
    """ SLICE training """

    trainer = ManifoldFlowTrainer(model) if simulator.parameter_dim(
    ) is None else ConditionalManifoldFlowTrainer(model)
    common_kwargs = {
        "dataset": dataset,
        "batch_size": args.batchsize,
        "initial_lr": args.lr,
        "scheduler": optim.lr_scheduler.CosineAnnealingLR,
        "clip_gradient": args.clip,
    }
    if args.weightdecay is not None:
        common_kwargs["optimizer_kwargs"] = {
            "weight_decay": float(args.weightdecay)
        }

    if args.nopretraining or args.epochs // 3 < 1:
        logger.info("Skipping pretraining phase")
        learning_curves = np.zeros((0, 2))
    else:
        logger.info(
            "Starting training slice of PIE, phase 1: pretraining on reconstruction error"
        )
        learning_curves = trainer.train(
            loss_functions=[losses.mse],
            loss_labels=["MSE"],
            loss_weights=[args.initialmsefactor],
            epochs=args.epochs // 3,
            callbacks=[
                callbacks.save_model_after_every_epoch(
                    create_filename("checkpoint", None, args)[:-3] +
                    "_epoch_A{}.pt")
            ],
            forward_kwargs={"mode": "projection"},
            **common_kwargs,
        )
        learning_curves = np.vstack(learning_curves).T

    logger.info("Starting training slice of PIE, phase 2: mixed training")
    learning_curves_ = trainer.train(
        loss_functions=[losses.mse, losses.nll],
        loss_labels=["MSE", "NLL"],
        loss_weights=[args.initialmsefactor, args.initialnllfactor],
        epochs=args.epochs - (1 if args.nopretraining else 2) *
        (args.epochs // 3),
        parameters=model.inner_transform.parameters(),
        callbacks=[
            callbacks.save_model_after_every_epoch(
                create_filename("checkpoint", None, args)[:-3] +
                "_epoch_B{}.pt")
        ],
        forward_kwargs={"mode": "slice"},
        **common_kwargs,
    )
    learning_curves_ = np.vstack(learning_curves_).T
    learning_curves = np.vstack((learning_curves, learning_curves_))

    logger.info(
        "Starting training slice of PIE, phase 3: training only inner flow on NLL"
    )
    learning_curves_ = trainer.train(
        loss_functions=[losses.mse, losses.nll],
        loss_labels=["MSE", "NLL"],
        loss_weights=[args.msefactor, args.nllfactor],
        epochs=args.epochs // 3,
        parameters=model.inner_transform.parameters(),
        callbacks=[
            callbacks.save_model_after_every_epoch(
                create_filename("checkpoint", None, args)[:-3] +
                "_epoch_C{}.pt")
        ],
        forward_kwargs={"mode": "slice"},
        **common_kwargs,
    )
    learning_curves_ = np.vstack(learning_curves_).T
    learning_curves = np.vstack((learning_curves, learning_curves_))

    return learning_curves
Example #6
0
def train_manifold_flow(args, dataset, model, simulator):
    """ MFMF-S training """

    trainer = ManifoldFlowTrainer(model) if simulator.parameter_dim(
    ) is None else ConditionalManifoldFlowTrainer(model)
    common_kwargs = {
        "dataset": dataset,
        "batch_size": args.batchsize,
        "initial_lr": args.lr,
        "scheduler": optim.lr_scheduler.CosineAnnealingLR,
        "clip_gradient": args.clip,
    }
    if args.weightdecay is not None:
        common_kwargs["optimizer_kwargs"] = {
            "weight_decay": float(args.weightdecay)
        }

    if args.specified:
        logger.info("Starting training MF with specified manifold on NLL")
        learning_curves = trainer.train(
            loss_functions=[losses.mse, losses.nll],
            loss_labels=["MSE", "NLL"],
            loss_weights=[0.0, args.nllfactor],
            epochs=args.epochs,
            callbacks=[
                callbacks.save_model_after_every_epoch(
                    create_filename("checkpoint", None, args)[:-3] +
                    "_epoch_{}.pt")
            ],
            forward_kwargs={"mode": "mf"},
            **common_kwargs,
        )
        learning_curves = np.vstack(learning_curves).T
    else:
        if args.nopretraining or args.epochs // args.prepostfraction < 1:
            logger.info("Skipping pretraining phase")
            learning_curves = None
        elif args.prepie:
            logger.info(
                "Starting training MF, phase 1: pretraining on PIE likelihood")
            learning_curves = trainer.train(
                loss_functions=[losses.nll],
                loss_labels=["NLL"],
                loss_weights=[args.nllfactor],
                epochs=args.epochs // args.prepostfraction,
                callbacks=[
                    callbacks.save_model_after_every_epoch(
                        create_filename("checkpoint", None, args)[:-3] +
                        "_epoch_A{}.pt")
                ],
                forward_kwargs={"mode": "pie"},
                **common_kwargs,
            )
            learning_curves = np.vstack(learning_curves).T
        else:
            logger.info(
                "Starting training MF, phase 1: pretraining on reconstruction error"
            )
            learning_curves = trainer.train(
                loss_functions=[losses.mse],
                loss_labels=["MSE"],
                loss_weights=[args.msefactor],
                epochs=args.epochs // args.prepostfraction,
                callbacks=[
                    callbacks.save_model_after_every_epoch(
                        create_filename("checkpoint", None, args)[:-3] +
                        "_epoch_A{}.pt")
                ],
                forward_kwargs={"mode": "projection"},
                **common_kwargs,
            )
            learning_curves = np.vstack(learning_curves).T

        logger.info("Starting training MF, phase 2: mixed training")
        learning_curves_ = trainer.train(
            loss_functions=[losses.mse, losses.nll],
            loss_labels=["MSE", "NLL"],
            loss_weights=[args.msefactor, args.addnllfactor],
            epochs=args.epochs -
            (2 - int(args.nopretraining) - int(args.noposttraining)) *
            (args.epochs // args.prepostfraction),
            parameters=model.parameters(),
            callbacks=[
                callbacks.save_model_after_every_epoch(
                    create_filename("checkpoint", None, args)[:-3] +
                    "_epoch_B{}.pt")
            ],
            forward_kwargs={"mode": "mf"},
            **common_kwargs,
        )
        learning_curves_ = np.vstack(learning_curves_).T
        learning_curves = learning_curves_ if learning_curves is None else np.vstack(
            (learning_curves, learning_curves_))

        if args.nopretraining or args.epochs // args.prepostfraction < 1:
            logger.info("Skipping inner flow phase")
        else:
            logger.info(
                "Starting training MF, phase 3: training only inner flow on NLL"
            )
            learning_curves_ = trainer.train(
                loss_functions=[losses.mse, losses.nll],
                loss_labels=["MSE", "NLL"],
                loss_weights=[0.0, args.nllfactor],
                epochs=args.epochs // args.prepostfraction,
                parameters=model.inner_transform.parameters(),
                callbacks=[
                    callbacks.save_model_after_every_epoch(
                        create_filename("checkpoint", None, args)[:-3] +
                        "_epoch_C{}.pt")
                ],
                forward_kwargs={"mode": "mf-fixed-manifold"},
                **common_kwargs,
            )
            learning_curves_ = np.vstack(learning_curves_).T
            learning_curves = np.vstack((learning_curves, learning_curves_))

    return learning_curves