def train_pie(args, dataset, model, simulator): """ PIE training """ trainer = ManifoldFlowTrainer(model) if simulator.parameter_dim( ) is None else ConditionalManifoldFlowTrainer(model) logger.info("Starting training PIE on NLL") common_kwargs = { "dataset": dataset, "batch_size": args.batchsize, "initial_lr": args.lr, "scheduler": optim.lr_scheduler.CosineAnnealingLR, "clip_gradient": args.clip, } if args.weightdecay is not None: common_kwargs["optimizer_kwargs"] = { "weight_decay": float(args.weightdecay) } learning_curves = trainer.train( loss_functions=[losses.nll], loss_labels=["NLL"], loss_weights=[args.nllfactor], epochs=args.epochs, callbacks=[ callbacks.save_model_after_every_epoch( create_filename("checkpoint", None, args)[:-3] + "_epoch_{}.pt") ], forward_kwargs={"mode": "pie"}, **common_kwargs, ) learning_curves = np.vstack(learning_curves).T return learning_curves
def train_manifold_flow_sequential(args, dataset, model, simulator): """ MFMF-A training """ assert not args.specified trainer = ManifoldFlowTrainer(model) if simulator.parameter_dim( ) is None else ConditionalManifoldFlowTrainer(model) common_kwargs = { "dataset": dataset, "batch_size": args.batchsize, "initial_lr": args.lr, "scheduler": optim.lr_scheduler.CosineAnnealingLR, "clip_gradient": args.clip, } if args.weightdecay is not None: common_kwargs["optimizer_kwargs"] = { "weight_decay": float(args.weightdecay) } logger.info("Starting training MF, phase 1: manifold training") learning_curves = trainer.train( loss_functions=[losses.mse], loss_labels=["MSE"], loss_weights=[args.msefactor], epochs=args.epochs // 2, parameters=list(model.outer_transform.parameters()) + list(model.encoder.parameters()) if args.algorithm == "emf" else model.outer_transform.parameters(), callbacks=[ callbacks.save_model_after_every_epoch( create_filename("checkpoint", None, args)[:-3] + "_epoch_A{}.pt") ], forward_kwargs={"mode": "projection"}, **common_kwargs, ) learning_curves = np.vstack(learning_curves).T logger.info("Starting training MF, phase 2: density training") learning_curves_ = trainer.train( loss_functions=[losses.nll], loss_labels=["NLL"], loss_weights=[args.nllfactor], epochs=args.epochs - (args.epochs // 2), parameters=model.inner_transform.parameters(), callbacks=[ callbacks.save_model_after_every_epoch( create_filename("checkpoint", None, args)[:-3] + "_epoch_B{}.pt") ], forward_kwargs={"mode": "mf-fixed-manifold"}, **common_kwargs, ) learning_curves_ = np.vstack(learning_curves_).T learning_curves = learning_curves_ if learning_curves is None else np.vstack( (learning_curves, learning_curves_)) return learning_curves
def train_manifold_flow_alternating(args, dataset, model, simulator): """ MFMF-A training """ assert not args.specified trainer = ManifoldFlowTrainer(model) if simulator.parameter_dim( ) is None else ConditionalManifoldFlowTrainer(model) metatrainer = AlternatingTrainer(model, trainer, trainer) meta_kwargs = { "dataset": dataset, "initial_lr": args.lr, "scheduler": optim.lr_scheduler.CosineAnnealingLR } if args.weightdecay is not None: meta_kwargs["optimizer_kwargs"] = { "weight_decay": float(args.weightdecay) } phase1_kwargs = { "forward_kwargs": { "mode": "projection" }, "clip_gradient": args.clip } phase2_kwargs = { "forward_kwargs": { "mode": "mf-fixed-manifold" }, "clip_gradient": args.clip } phase1_parameters = (list(model.outer_transform.parameters()) + list(model.encoder.parameters()) if args.algorithm == "emf" else model.outer_transform.parameters()) phase2_parameters = model.inner_transform.parameters() logger.info( "Starting training MF, alternating between reconstruction error and log likelihood" ) learning_curves_ = metatrainer.train( loss_functions=[losses.mse, losses.nll], loss_function_trainers=[0, 1], loss_labels=["MSE", "NLL"], loss_weights=[args.msefactor, args.nllfactor], epochs=args.epochs // 2, subsets=args.subsets, batch_sizes=[args.batchsize, args.batchsize], parameters=[phase1_parameters, phase2_parameters], callbacks=[ callbacks.save_model_after_every_epoch( create_filename("checkpoint", None, args)[:-3] + "_epoch_{}.pt") ], trainer_kwargs=[phase1_kwargs, phase2_kwargs], **meta_kwargs, ) learning_curves = np.vstack(learning_curves_).T return learning_curves
def train_generative_adversarial_manifold_flow_alternating( args, dataset, model, simulator): """ MFMF-OTA training """ assert not args.specified gen_trainer = GenerativeTrainer(model) if simulator.parameter_dim( ) is None else ConditionalGenerativeTrainer(model) likelihood_trainer = ManifoldFlowTrainer(model) if simulator.parameter_dim( ) is None else ConditionalManifoldFlowTrainer(model) metatrainer = AlternatingTrainer(model, gen_trainer, likelihood_trainer) meta_kwargs = { "dataset": dataset, "initial_lr": args.lr, "scheduler": optim.lr_scheduler.CosineAnnealingLR } if args.weightdecay is not None: meta_kwargs["optimizer_kwargs"] = { "weight_decay": float(args.weightdecay) } phase1_kwargs = {"clip_gradient": args.clip} phase2_kwargs = { "forward_kwargs": { "mode": "mf-fixed-manifold" }, "clip_gradient": args.clip } phase1_parameters = model.parameters() phase2_parameters = model.inner_transform.parameters() logger.info( "Starting training GAMF, alternating between Sinkhorn divergence and log likelihood" ) learning_curves_ = metatrainer.train( loss_functions=[losses.make_sinkhorn_divergence(), losses.nll], loss_function_trainers=[0, 1], loss_labels=["GED", "NLL"], loss_weights=[args.sinkhornfactor, args.nllfactor], batch_sizes=[args.genbatchsize, args.batchsize], epochs=args.epochs // 2, parameters=[phase1_parameters, phase2_parameters], callbacks=[ callbacks.save_model_after_every_epoch( create_filename("checkpoint", None, args)[:-3] + "_epoch_{}.pt") ], trainer_kwargs=[phase1_kwargs, phase2_kwargs], subsets=args.subsets, subset_callbacks=[callbacks.print_mf_weight_statistics()] if args.debug else None, **meta_kwargs, ) learning_curves = np.vstack(learning_curves_).T return learning_curves
def train_slice_of_pie(args, dataset, model, simulator): """ SLICE training """ trainer = ManifoldFlowTrainer(model) if simulator.parameter_dim( ) is None else ConditionalManifoldFlowTrainer(model) common_kwargs = { "dataset": dataset, "batch_size": args.batchsize, "initial_lr": args.lr, "scheduler": optim.lr_scheduler.CosineAnnealingLR, "clip_gradient": args.clip, } if args.weightdecay is not None: common_kwargs["optimizer_kwargs"] = { "weight_decay": float(args.weightdecay) } if args.nopretraining or args.epochs // 3 < 1: logger.info("Skipping pretraining phase") learning_curves = np.zeros((0, 2)) else: logger.info( "Starting training slice of PIE, phase 1: pretraining on reconstruction error" ) learning_curves = trainer.train( loss_functions=[losses.mse], loss_labels=["MSE"], loss_weights=[args.initialmsefactor], epochs=args.epochs // 3, callbacks=[ callbacks.save_model_after_every_epoch( create_filename("checkpoint", None, args)[:-3] + "_epoch_A{}.pt") ], forward_kwargs={"mode": "projection"}, **common_kwargs, ) learning_curves = np.vstack(learning_curves).T logger.info("Starting training slice of PIE, phase 2: mixed training") learning_curves_ = trainer.train( loss_functions=[losses.mse, losses.nll], loss_labels=["MSE", "NLL"], loss_weights=[args.initialmsefactor, args.initialnllfactor], epochs=args.epochs - (1 if args.nopretraining else 2) * (args.epochs // 3), parameters=model.inner_transform.parameters(), callbacks=[ callbacks.save_model_after_every_epoch( create_filename("checkpoint", None, args)[:-3] + "_epoch_B{}.pt") ], forward_kwargs={"mode": "slice"}, **common_kwargs, ) learning_curves_ = np.vstack(learning_curves_).T learning_curves = np.vstack((learning_curves, learning_curves_)) logger.info( "Starting training slice of PIE, phase 3: training only inner flow on NLL" ) learning_curves_ = trainer.train( loss_functions=[losses.mse, losses.nll], loss_labels=["MSE", "NLL"], loss_weights=[args.msefactor, args.nllfactor], epochs=args.epochs // 3, parameters=model.inner_transform.parameters(), callbacks=[ callbacks.save_model_after_every_epoch( create_filename("checkpoint", None, args)[:-3] + "_epoch_C{}.pt") ], forward_kwargs={"mode": "slice"}, **common_kwargs, ) learning_curves_ = np.vstack(learning_curves_).T learning_curves = np.vstack((learning_curves, learning_curves_)) return learning_curves
def train_manifold_flow(args, dataset, model, simulator): """ MFMF-S training """ trainer = ManifoldFlowTrainer(model) if simulator.parameter_dim( ) is None else ConditionalManifoldFlowTrainer(model) common_kwargs = { "dataset": dataset, "batch_size": args.batchsize, "initial_lr": args.lr, "scheduler": optim.lr_scheduler.CosineAnnealingLR, "clip_gradient": args.clip, } if args.weightdecay is not None: common_kwargs["optimizer_kwargs"] = { "weight_decay": float(args.weightdecay) } if args.specified: logger.info("Starting training MF with specified manifold on NLL") learning_curves = trainer.train( loss_functions=[losses.mse, losses.nll], loss_labels=["MSE", "NLL"], loss_weights=[0.0, args.nllfactor], epochs=args.epochs, callbacks=[ callbacks.save_model_after_every_epoch( create_filename("checkpoint", None, args)[:-3] + "_epoch_{}.pt") ], forward_kwargs={"mode": "mf"}, **common_kwargs, ) learning_curves = np.vstack(learning_curves).T else: if args.nopretraining or args.epochs // args.prepostfraction < 1: logger.info("Skipping pretraining phase") learning_curves = None elif args.prepie: logger.info( "Starting training MF, phase 1: pretraining on PIE likelihood") learning_curves = trainer.train( loss_functions=[losses.nll], loss_labels=["NLL"], loss_weights=[args.nllfactor], epochs=args.epochs // args.prepostfraction, callbacks=[ callbacks.save_model_after_every_epoch( create_filename("checkpoint", None, args)[:-3] + "_epoch_A{}.pt") ], forward_kwargs={"mode": "pie"}, **common_kwargs, ) learning_curves = np.vstack(learning_curves).T else: logger.info( "Starting training MF, phase 1: pretraining on reconstruction error" ) learning_curves = trainer.train( loss_functions=[losses.mse], loss_labels=["MSE"], loss_weights=[args.msefactor], epochs=args.epochs // args.prepostfraction, callbacks=[ callbacks.save_model_after_every_epoch( create_filename("checkpoint", None, args)[:-3] + "_epoch_A{}.pt") ], forward_kwargs={"mode": "projection"}, **common_kwargs, ) learning_curves = np.vstack(learning_curves).T logger.info("Starting training MF, phase 2: mixed training") learning_curves_ = trainer.train( loss_functions=[losses.mse, losses.nll], loss_labels=["MSE", "NLL"], loss_weights=[args.msefactor, args.addnllfactor], epochs=args.epochs - (2 - int(args.nopretraining) - int(args.noposttraining)) * (args.epochs // args.prepostfraction), parameters=model.parameters(), callbacks=[ callbacks.save_model_after_every_epoch( create_filename("checkpoint", None, args)[:-3] + "_epoch_B{}.pt") ], forward_kwargs={"mode": "mf"}, **common_kwargs, ) learning_curves_ = np.vstack(learning_curves_).T learning_curves = learning_curves_ if learning_curves is None else np.vstack( (learning_curves, learning_curves_)) if args.nopretraining or args.epochs // args.prepostfraction < 1: logger.info("Skipping inner flow phase") else: logger.info( "Starting training MF, phase 3: training only inner flow on NLL" ) learning_curves_ = trainer.train( loss_functions=[losses.mse, losses.nll], loss_labels=["MSE", "NLL"], loss_weights=[0.0, args.nllfactor], epochs=args.epochs // args.prepostfraction, parameters=model.inner_transform.parameters(), callbacks=[ callbacks.save_model_after_every_epoch( create_filename("checkpoint", None, args)[:-3] + "_epoch_C{}.pt") ], forward_kwargs={"mode": "mf-fixed-manifold"}, **common_kwargs, ) learning_curves_ = np.vstack(learning_curves_).T learning_curves = np.vstack((learning_curves, learning_curves_)) return learning_curves