def __init__(self, *args, func=AnimateStroke, run_time=None, fix_time=None, lag_ratio=0,**kwargs):
     animations=AGroup()
     runtime={}
     fixtime={}
     if isinstance(args[-1], (int,float)):
         if args[-1]>=0:
             runtime.update({'run_time':args[-1]})
         else:
             fixtime.update({'run_time':-args[-1]})
         args=args[:-1]
     if run_time is not None:
         runtime.update({'runtime':runtime})
     if fix_time is not None:
         fixtime.update({'fix_time':fix_time})
     for arg in args:
         kws={}
         if isinstance(arg[-1], dict):
             kws=arg[-1]
             arg=arg[:-1]
         kws.update(fixtime)
         kws.update(kwargs)
         mobj=VMobject()
         for each in arg:
             if isinstance(arg[0],(Mobject,Group,VMobject,VGroup)):
                 mobj.add(arg[0])
                 arg=arg[1:]
         animations.add(func(mobj,*arg,**kws))
     super().__init__(*animations,lag_ratio=lag_ratio,**runtime)
Example #2
0
def get_det_text(matrix,
                 determinant=None,
                 background_rect=True,
                 initial_scale_factor=2):
    parens = TexMobject(["(", ")"])
    parens.scale(initial_scale_factor)
    parens.stretch_to_fit_height(matrix.get_height())
    l_paren, r_paren = parens.split()
    l_paren.next_to(matrix, LEFT, buff=0.1)
    r_paren.next_to(matrix, RIGHT, buff=0.1)
    det = TextMobject("det")
    det.scale(initial_scale_factor)
    det.next_to(l_paren, LEFT, buff=0.1)
    if background_rect:
        det.add_background_rectangle()
    det_text = VMobject(det, l_paren, r_paren)
    if determinant is not None:
        eq = TexMobject("=")
        eq.next_to(r_paren, RIGHT, buff=0.1)
        result = TexMobject(str(determinant))
        result.next_to(eq, RIGHT, buff=0.2)
        det_text.add(eq, result)
    return det_text
Example #3
0
class NumberPlane(VMobject):
    CONFIG = {
        "color": BLUE_D,
        "secondary_color": BLUE_E,
        "axes_color": WHITE,
        "secondary_stroke_width": 1,
        # TODO: Allow coordinate center of NumberPlane to not be at (0, 0)
        "x_radius": None,
        "y_radius": None,
        "x_unit_size": 1,
        "y_unit_size": 1,
        "center_point": ORIGIN,
        "x_line_frequency": 1,
        "y_line_frequency": 1,
        "secondary_line_ratio": 1,
        "written_coordinate_height": 0.2,
        "propagate_style_to_family": False,
        "make_smooth_after_applying_functions": True,
    }

    def generate_points(self):
        if self.x_radius is None:
            center_to_edge = (FRAME_X_RADIUS + abs(self.center_point[0]))
            self.x_radius = center_to_edge / self.x_unit_size
        if self.y_radius is None:
            center_to_edge = (FRAME_Y_RADIUS + abs(self.center_point[1]))
            self.y_radius = center_to_edge / self.y_unit_size
        self.axes = VMobject()
        self.main_lines = VMobject()
        self.secondary_lines = VMobject()
        tuples = [
            (self.x_radius, self.x_line_frequency, self.y_radius * DOWN,
             self.y_radius * UP, RIGHT),
            (
                self.y_radius,
                self.y_line_frequency,
                self.x_radius * LEFT,
                self.x_radius * RIGHT,
                UP,
            ),
        ]
        for radius, freq, start, end, unit in tuples:
            main_range = np.arange(0, radius, freq)
            step = freq / float(freq + self.secondary_line_ratio)
            for v in np.arange(0, radius, step):
                line1 = Line(start + v * unit, end + v * unit)
                line2 = Line(start - v * unit, end - v * unit)
                if v == 0:
                    self.axes.add(line1)
                elif v in main_range:
                    self.main_lines.add(line1, line2)
                else:
                    self.secondary_lines.add(line1, line2)
        self.add(self.secondary_lines, self.main_lines, self.axes)
        self.stretch(self.x_unit_size, 0)
        self.stretch(self.y_unit_size, 1)
        self.shift(self.center_point)
        # Put x_axis before y_axis
        y_axis, x_axis = self.axes.split()
        self.axes = VMobject(x_axis, y_axis)

    def init_colors(self):
        VMobject.init_colors(self)
        self.axes.set_stroke(self.axes_color, self.stroke_width)
        self.main_lines.set_stroke(self.color, self.stroke_width)
        self.secondary_lines.set_stroke(self.secondary_color,
                                        self.secondary_stroke_width)
        return self

    def get_center_point(self):
        return self.coords_to_point(0, 0)

    def coords_to_point(self, x, y):
        x, y = np.array([x, y])
        result = self.axes.get_center()
        result += x * self.get_x_unit_size() * RIGHT
        result += y * self.get_y_unit_size() * UP
        return result

    def point_to_coords(self, point):
        new_point = point - self.axes.get_center()
        x = new_point[0] / self.get_x_unit_size()
        y = new_point[1] / self.get_y_unit_size()
        return x, y

    # Does not recompute center, unit_sizes for each call; useful for
    # iterating over large lists of points, but does assume these
    # attributes are kept accurate. (Could alternatively have a method
    # which returns a function dynamically created after a single
    # call to each of get_center(), get_x_unit_size(), etc.)
    def point_to_coords_cheap(self, point):
        new_point = point - self.center_point
        x = new_point[0] / self.x_unit_size
        y = new_point[1] / self.y_unit_size
        return x, y

    def get_x_unit_size(self):
        return self.axes.get_width() / (2.0 * self.x_radius)

    def get_y_unit_size(self):
        return self.axes.get_height() / (2.0 * self.y_radius)

    def get_coordinate_labels(self, x_vals=None, y_vals=None):
        coordinate_labels = VGroup()
        if x_vals is None:
            x_vals = list(range(-int(self.x_radius), int(self.x_radius) + 1))
        if y_vals is None:
            y_vals = list(range(-int(self.y_radius), int(self.y_radius) + 1))
        for index, vals in enumerate([x_vals, y_vals]):
            num_pair = [0, 0]
            for val in vals:
                if val == 0:
                    continue
                num_pair[index] = val
                point = self.coords_to_point(*num_pair)
                num = TexMobject(str(val))
                num.add_background_rectangle()
                num.set_height(self.written_coordinate_height)
                num.next_to(point, DOWN + LEFT, buff=SMALL_BUFF)
                coordinate_labels.add(num)
        self.coordinate_labels = coordinate_labels
        return coordinate_labels

    def get_axes(self):
        return self.axes

    def get_axis_labels(self, x_label="x", y_label="y"):
        x_axis, y_axis = self.get_axes().split()
        quads = [
            (x_axis, x_label, UP, RIGHT),
            (y_axis, y_label, RIGHT, UP),
        ]
        labels = VGroup()
        for axis, tex, vect, edge in quads:
            label = TexMobject(tex)
            label.add_background_rectangle()
            label.next_to(axis, vect)
            label.to_edge(edge)
            labels.add(label)
        self.axis_labels = labels
        return labels

    def add_coordinates(self, x_vals=None, y_vals=None):
        self.add(*self.get_coordinate_labels(x_vals, y_vals))
        return self

    def get_vector(self, coords, **kwargs):
        point = coords[0] * RIGHT + coords[1] * UP
        arrow = Arrow(ORIGIN, point, **kwargs)
        return arrow

    def prepare_for_nonlinear_transform(self, num_inserted_anchor_points=50):
        for mob in self.family_members_with_points():
            num_anchors = mob.get_num_anchor_points()
            if num_inserted_anchor_points > num_anchors:
                mob.insert_n_anchor_points(num_inserted_anchor_points -
                                           num_anchors)
                mob.make_smooth()
        return self