Example #1
0
    def export_roi_to_workspace_mdhisto(self,
                                        slicepoint: Sequence[Optional[float]],
                                        bin_params: Sequence[float],
                                        limits: tuple, transpose: bool):
        """
        Export 2D ROI to a workspace.
        :param slicepoint: ND sequence of either None or float. A float defines the point
                           in that dimension for the slice.
        :param bin_params: ND sequence containing the number of bins for each dimension. Can be None for HistoWorkspaces
        :param limits: An optional ND sequence containing limits for plotting dimensions. If
                       not provided the full extent of each dimension is used
        :param transpose: If true then the limits are transposed w.r.t to the data
        """
        workspace = self._get_ws()
        if transpose:
            # swap back to model order
            limits = limits[1], limits[0]
        xindex, yindex = _display_indices(slicepoint)
        dim_limits = _dimension_limits(workspace, slicepoint, limits)
        # Construct paramters to integrate everything first and overrid per cut
        params = {
            f'P{n+1}Bin': [*dim_limits[n]]
            for n in range(workspace.getNumDims())
        }

        xdim_min, xdim_max = dim_limits[xindex]
        ydim_min, ydim_max = dim_limits[yindex]
        params['OutputWorkspace'] = self._roi_name
        params[f'P{xindex+1}Bin'] = [xdim_min, 0, xdim_max]
        params[f'P{yindex+1}Bin'] = [ydim_min, 0, ydim_max]
        IntegrateMDHistoWorkspace(InputWorkspace=workspace, **params)
        if transpose:
            _inplace_transposemd(self._roi_name, axes=[yindex, xindex])

        return f'ROI created: {self._roi_name}'
Example #2
0
    def export_cuts_to_workspace_mdhisto(self,
                                         slicepoint: Sequence[Optional[float]],
                                         bin_params: Sequence[float],
                                         limits: tuple, transpose: bool,
                                         dimension_indices: Sequence[int],
                                         cut: str):
        """
        Export 1D cuts in the X/Y direction for the extent.
        :param slicepoint: ND sequence of either None or float. A float defines the point
                           in that dimension for the slice.
        :param bin_params: ND sequence containing the number of bins for each dimension. Can be None for HistoWorkspaces
        :param limits: An optional ND sequence containing limits for plotting dimensions. If
                       not provided the full extent of each dimension is used
        :param transpose: If true then the limits are transposed w.r.t to the data
        :param cut: A string denoting which type to export. Options=c,x,y.
        """
        workspace = self._get_ws()
        if transpose:
            # swap back to model order
            limits = limits[1], limits[0]
        dim_limits = _dimension_limits(workspace, slicepoint, limits)
        # Construct paramters to integrate everything first and overrid per cut
        params = {
            f'P{n + 1}Bin': [*dim_limits[n]]
            for n in range(workspace.getNumDims())
        }
        xindex, yindex = _display_indices(slicepoint, transpose)

        xcut_name, ycut_name, help_msg = self._cut_names(cut)
        xdim_min, xdim_max = dim_limits[xindex]
        ydim_min, ydim_max = dim_limits[yindex]
        if xcut_name:
            params['OutputWorkspace'] = xcut_name
            params[f'P{xindex + 1}Bin'] = [xdim_min, 0, xdim_max]
            IntegrateMDHistoWorkspace(InputWorkspace=workspace, **params)
            _keep_dimensions(xcut_name, xindex)
        if ycut_name:
            params['OutputWorkspace'] = ycut_name
            params[f'P{xindex + 1}Bin'] = [xdim_min, xdim_max]
            params[f'P{yindex + 1}Bin'] = [ydim_min, 0, ydim_max]
            IntegrateMDHistoWorkspace(InputWorkspace=workspace, **params)
            _keep_dimensions(ycut_name, yindex)

        return help_msg
Example #3
0
    def PyExec(self):
        input_workspaces = self._expand_groups()
        outWS = self.getPropertyValue("OutputWorkspace")
        CreatePeaksWorkspace(OutputType='LeanElasticPeak',
                             InstrumentWorkspace=input_workspaces[0],
                             NumberOfPeaks=0,
                             OutputWorkspace=outWS,
                             EnableLogging=False)

        method = self.getProperty("Method").value
        n_bkgr_pts = self.getProperty("NumBackgroundPts").value
        n_fwhm = self.getProperty("WidthScale").value
        scale = self.getProperty("ScaleFactor").value
        chisqmax = self.getProperty("ChiSqMax").value
        signalNoiseMin = self.getProperty("SignalNoiseMin").value
        ll = self.getProperty("LowerLeft").value
        ur = self.getProperty("UpperRight").value
        startX = self.getProperty('StartX').value
        endX = self.getProperty('EndX').value
        use_lorentz = self.getProperty("ApplyLorentz").value
        optmize_q = self.getProperty("OptimizeQVector").value
        output_fit = self.getProperty("OutputFitResults").value

        if output_fit and method != "Counts":
            fit_results = WorkspaceGroup()
            AnalysisDataService.addOrReplace(outWS + "_fit_results",
                                             fit_results)

        for inWS in input_workspaces:
            tmp_inWS = '__tmp_' + inWS
            IntegrateMDHistoWorkspace(InputWorkspace=inWS,
                                      P1Bin=f'{ll[1]},{ur[1]}',
                                      P2Bin=f'{ll[0]},{ur[0]}',
                                      OutputWorkspace=tmp_inWS,
                                      EnableLogging=False)
            ConvertMDHistoToMatrixWorkspace(tmp_inWS,
                                            OutputWorkspace=tmp_inWS,
                                            EnableLogging=False)
            data = ConvertToPointData(tmp_inWS,
                                      OutputWorkspace=tmp_inWS,
                                      EnableLogging=False)

            run = mtd[inWS].getExperimentInfo(0).run()
            scan_log = 'omega' if np.isclose(run.getTimeAveragedStd('phi'),
                                             0.0) else 'phi'
            scan_axis = run[scan_log].value
            scan_step = (scan_axis[-1] - scan_axis[0]) / (scan_axis.size - 1)
            data.setX(0, scan_axis)

            y = data.extractY().flatten()
            x = data.extractX().flatten()

            __tmp_pw = CreatePeaksWorkspace(OutputType='LeanElasticPeak',
                                            InstrumentWorkspace=inWS,
                                            NumberOfPeaks=0,
                                            EnableLogging=False)

            if method != "Counts":
                # fit against gaussian with flat background for both the Fitted and CountsWithFitting methods
                fit_result = self._fit_gaussian(inWS, data, x, y, startX, endX,
                                                output_fit)

                if fit_result and fit_result.OutputStatus == 'success' and fit_result.OutputChi2overDoF < chisqmax:
                    B, A, peak_centre, sigma, _ = fit_result.OutputParameters.toDict(
                    )['Value']
                    _, errA, _, errs, _ = fit_result.OutputParameters.toDict(
                    )['Error']

                    if method == "Fitted":
                        integrated_intensity = A * sigma * np.sqrt(2 * np.pi)

                        # Convert correlation back into covariance
                        cor_As = (
                            fit_result.OutputNormalisedCovarianceMatrix.cell(
                                1, 4) / 100 *
                            fit_result.OutputParameters.cell(1, 2) *
                            fit_result.OutputParameters.cell(3, 2))
                        # σ^2 = 2π (A^2 σ_s^2 + σ_A^2 s^2 + 2 A s σ_As)
                        integrated_intensity_error = np.sqrt(
                            2 * np.pi * (A**2 * errs**2 + sigma**2 * errA**2 +
                                         2 * A * sigma * cor_As))

                    elif method == "CountsWithFitting":
                        y = y[slice(
                            np.searchsorted(
                                x, peak_centre - 2.3548 * sigma * n_fwhm / 2),
                            np.searchsorted(
                                x, peak_centre + 2.3548 * sigma * n_fwhm / 2))]
                        # subtract out the fitted flat background
                        integrated_intensity = (y.sum() -
                                                B * y.size) * scan_step
                        integrated_intensity_error = np.sum(
                            np.sqrt(y)) * scan_step

                    # update the goniometer position based on the fitted peak center
                    if scan_log == 'omega':
                        SetGoniometer(Workspace=__tmp_pw,
                                      Axis0=f'{peak_centre},0,1,0,-1',
                                      Axis1='chi,0,0,1,-1',
                                      Axis2='phi,0,1,0,-1',
                                      EnableLogging=False)
                    else:
                        SetGoniometer(Workspace=__tmp_pw,
                                      Axis0='omega,0,1,0,-1',
                                      Axis1='chi,0,0,1,-1',
                                      Axis2=f'{peak_centre},0,1,0,-1',
                                      EnableLogging=False)
                else:
                    self.log().warning(
                        "Failed to fit workspace {}: Output Status={}, ChiSq={}"
                        .format(inWS, fit_result.OutputStatus,
                                fit_result.OutputChi2overDoF))
                    self._delete_tmp_workspaces(str(__tmp_pw), tmp_inWS)
                    continue
            else:
                integrated_intensity, integrated_intensity_error = self._counts_integration(
                    data, n_bkgr_pts, scan_step)

                # set the goniometer position to use the average of the scan
                SetGoniometer(Workspace=__tmp_pw,
                              Axis0='omega,0,1,0,-1',
                              Axis1='chi,0,0,1,-1',
                              Axis2='phi,0,1,0,-1',
                              EnableLogging=False)

            integrated_intensity *= scale
            integrated_intensity_error *= scale

            peak = __tmp_pw.createPeakHKL([
                run['h'].getStatistics().median,
                run['k'].getStatistics().median,
                run['l'].getStatistics().median
            ])
            peak.setWavelength(float(run['wavelength'].value))
            peak.setIntensity(integrated_intensity)
            peak.setSigmaIntensity(integrated_intensity_error)

            if integrated_intensity / integrated_intensity_error > signalNoiseMin:
                __tmp_pw.addPeak(peak)

                # correct q-vector using CentroidPeaksMD
                if optmize_q:
                    __tmp_q_ws = HB3AAdjustSampleNorm(InputWorkspaces=inWS,
                                                      NormaliseBy='None',
                                                      EnableLogging=False)
                    __tmp_pw = CentroidPeaksMD(__tmp_q_ws,
                                               __tmp_pw,
                                               EnableLogging=False)
                    DeleteWorkspace(__tmp_q_ws, EnableLogging=False)

                if use_lorentz:
                    # ILL Neutron Data Booklet, Second Edition, Section 2.9, Part 4.1, Equation 7
                    peak = __tmp_pw.getPeak(0)
                    lorentz = abs(
                        np.sin(peak.getScattering() *
                               np.cos(peak.getAzimuthal())))
                    peak.setIntensity(peak.getIntensity() * lorentz)
                    peak.setSigmaIntensity(peak.getSigmaIntensity() * lorentz)

                CombinePeaksWorkspaces(outWS,
                                       __tmp_pw,
                                       OutputWorkspace=outWS,
                                       EnableLogging=False)

                if output_fit and method != "Counts":
                    fit_results.addWorkspace(
                        RenameWorkspace(tmp_inWS + '_Workspace',
                                        outWS + "_" + inWS + '_Workspace',
                                        EnableLogging=False))
                    fit_results.addWorkspace(
                        RenameWorkspace(tmp_inWS + '_Parameters',
                                        outWS + "_" + inWS + '_Parameters',
                                        EnableLogging=False))
                    fit_results.addWorkspace(
                        RenameWorkspace(
                            tmp_inWS + '_NormalisedCovarianceMatrix',
                            outWS + "_" + inWS + '_NormalisedCovarianceMatrix',
                            EnableLogging=False))
                    fit_results.addWorkspace(
                        IntegrateMDHistoWorkspace(
                            InputWorkspace=inWS,
                            P1Bin=f'{ll[1]},0,{ur[1]}',
                            P2Bin=f'{ll[0]},0,{ur[0]}',
                            P3Bin='0,{}'.format(
                                mtd[inWS].getDimension(2).getNBins()),
                            OutputWorkspace=outWS + "_" + inWS + "_ROI",
                            EnableLogging=False))
            else:
                self.log().warning(
                    "Skipping peak from {} because Signal/Noise={:.3f} which is less than {}"
                    .format(inWS,
                            integrated_intensity / integrated_intensity_error,
                            signalNoiseMin))

            self._delete_tmp_workspaces(str(__tmp_pw), tmp_inWS)

        self.setProperty("OutputWorkspace", mtd[outWS])
Example #4
0
convolved = convolve(signal, G3D)

convolved_fft = np.fft.fftshift(np.fft.fftn(np.fft.fftshift(convolved)))
convolved_out = (convolved_fft * np.conj(convolved_fft)).real

# Create output workspace
CreateMDHistoWorkspace(SignalInput=out,
                       ErrorInput=out**2,
                       Dimensionality=3,
                       Extents=extents,
                       NumberOfBins='{},{},{}'.format(*signal.shape),
                       Names='x,y,z',
                       Units='A,A,A',
                       OutputWorkspace='output')

integ = IntegrateMDHistoWorkspace(ws, P3Bin='-0.1,0.1')
signal = integ.getSignalArray().copy()

G1D = Gaussian1DKernel(2).array
G3D = G1D * G1D.reshape((-1, 1)) * G1D.reshape((-1, 1, 1))
convolved = convolve(signal, G3D)

signal[np.isnan(signal)] = 0
signal[np.isinf(signal)] = 0

axes = (0, 1)

fft = np.fft.fftshift(np.fft.fftn(np.fft.fftshift(signal, axes=axes),
                                  axes=axes),
                      axes=axes)
fft = np.fft.fftshift(np.fft.fftn(np.fft.fftshift(convolved, axes=axes),
    def PyExec(self):
        input_workspaces = self._expand_groups()
        outWS = self.getPropertyValue("OutputWorkspace")
        CreatePeaksWorkspace(OutputType='LeanElasticPeak',
                             InstrumentWorkspace=input_workspaces[0],
                             NumberOfPeaks=0,
                             OutputWorkspace=outWS,
                             EnableLogging=False)

        scale = self.getProperty("ScaleFactor").value
        chisqmax = self.getProperty("ChiSqMax").value
        signalNoiseMin = self.getProperty("SignalNoiseMin").value
        ll = self.getProperty("LowerLeft").value
        ur = self.getProperty("UpperRight").value
        startX = self.getProperty('StartX').value
        endX = self.getProperty('EndX').value
        use_lorentz = self.getProperty("ApplyLorentz").value
        optmize_q = self.getProperty("OptimizeQVector").value
        output_fit = self.getProperty("OutputFitResults").value

        if output_fit:
            fit_results = WorkspaceGroup()
            AnalysisDataService.addOrReplace(outWS + "_fit_results",
                                             fit_results)

        for inWS in input_workspaces:
            tmp_inWS = '__tmp_' + inWS
            IntegrateMDHistoWorkspace(InputWorkspace=inWS,
                                      P1Bin=f'{ll[1]},{ur[1]}',
                                      P2Bin=f'{ll[0]},{ur[0]}',
                                      OutputWorkspace=tmp_inWS,
                                      EnableLogging=False)
            ConvertMDHistoToMatrixWorkspace(tmp_inWS,
                                            OutputWorkspace=tmp_inWS,
                                            EnableLogging=False)
            data = ConvertToPointData(tmp_inWS,
                                      OutputWorkspace=tmp_inWS,
                                      EnableLogging=False)

            run = mtd[inWS].getExperimentInfo(0).run()
            scan_log = 'omega' if np.isclose(run.getTimeAveragedStd('phi'),
                                             0.0) else 'phi'
            scan_axis = run[scan_log].value
            data.setX(0, scan_axis)

            y = data.extractY().flatten()
            x = data.extractX().flatten()
            function = f"name=FlatBackground, A0={np.nanmin(y)};" \
                f"name=Gaussian, PeakCentre={x[np.nanargmax(y)]}, Height={np.nanmax(y)-np.nanmin(y)}, Sigma=0.25"
            constraints = f"f0.A0 > 0, f1.Height > 0, {x.min()} < f1.PeakCentre < {x.max()}"
            try:
                fit_result = Fit(function,
                                 data,
                                 Output=str(data),
                                 IgnoreInvalidData=True,
                                 OutputParametersOnly=not output_fit,
                                 Constraints=constraints,
                                 StartX=startX,
                                 EndX=endX,
                                 EnableLogging=False)
            except RuntimeError as e:
                self.log().warning("Failed to fit workspace {}: {}".format(
                    inWS, e))
                continue

            if fit_result.OutputStatus == 'success' and fit_result.OutputChi2overDoF < chisqmax:
                __tmp_pw = CreatePeaksWorkspace(OutputType='LeanElasticPeak',
                                                InstrumentWorkspace=inWS,
                                                NumberOfPeaks=0,
                                                EnableLogging=False)

                _, A, x, s, _ = fit_result.OutputParameters.toDict()['Value']
                _, errA, _, errs, _ = fit_result.OutputParameters.toDict(
                )['Error']

                if scan_log == 'omega':
                    SetGoniometer(Workspace=__tmp_pw,
                                  Axis0=f'{x},0,1,0,-1',
                                  Axis1='chi,0,0,1,-1',
                                  Axis2='phi,0,1,0,-1',
                                  EnableLogging=False)
                else:
                    SetGoniometer(Workspace=__tmp_pw,
                                  Axis0='omega,0,1,0,-1',
                                  Axis1='chi,0,0,1,-1',
                                  Axis2=f'{x},0,1,0,-1',
                                  EnableLogging=False)

                peak = __tmp_pw.createPeakHKL([
                    run['h'].getStatistics().median,
                    run['k'].getStatistics().median,
                    run['l'].getStatistics().median
                ])
                peak.setWavelength(float(run['wavelength'].value))

                integrated_intensity = A * s * np.sqrt(2 * np.pi) * scale
                peak.setIntensity(integrated_intensity)

                # Convert correlation back into covariance
                cor_As = (
                    fit_result.OutputNormalisedCovarianceMatrix.cell(1, 4) /
                    100 * fit_result.OutputParameters.cell(1, 2) *
                    fit_result.OutputParameters.cell(3, 2))
                # σ^2 = 2π (A^2 σ_s^2 + σ_A^2 s^2 + 2 A s σ_As)
                integrated_intensity_error = np.sqrt(
                    2 * np.pi * (A**2 * errs**2 + s**2 * errA**2 +
                                 2 * A * s * cor_As)) * scale
                peak.setSigmaIntensity(integrated_intensity_error)

                if integrated_intensity / integrated_intensity_error > signalNoiseMin:
                    __tmp_pw.addPeak(peak)

                    # correct q-vector using CentroidPeaksMD
                    if optmize_q:
                        __tmp_q_ws = HB3AAdjustSampleNorm(InputWorkspaces=inWS,
                                                          NormaliseBy='None',
                                                          EnableLogging=False)
                        __tmp_pw = CentroidPeaksMD(__tmp_q_ws,
                                                   __tmp_pw,
                                                   EnableLogging=False)
                        DeleteWorkspace(__tmp_q_ws, EnableLogging=False)

                    if use_lorentz:
                        # ILL Neutron Data Booklet, Second Edition, Section 2.9, Part 4.1, Equation 7
                        peak = __tmp_pw.getPeak(0)
                        lorentz = abs(
                            np.sin(peak.getScattering() *
                                   np.cos(peak.getAzimuthal())))
                        peak.setIntensity(peak.getIntensity() * lorentz)
                        peak.setSigmaIntensity(peak.getSigmaIntensity() *
                                               lorentz)

                    CombinePeaksWorkspaces(outWS,
                                           __tmp_pw,
                                           OutputWorkspace=outWS,
                                           EnableLogging=False)
                    DeleteWorkspace(__tmp_pw, EnableLogging=False)

                    if output_fit:
                        fit_results.addWorkspace(
                            RenameWorkspace(tmp_inWS + '_Workspace',
                                            outWS + "_" + inWS + '_Workspace',
                                            EnableLogging=False))
                        fit_results.addWorkspace(
                            RenameWorkspace(tmp_inWS + '_Parameters',
                                            outWS + "_" + inWS + '_Parameters',
                                            EnableLogging=False))
                        fit_results.addWorkspace(
                            RenameWorkspace(tmp_inWS +
                                            '_NormalisedCovarianceMatrix',
                                            outWS + "_" + inWS +
                                            '_NormalisedCovarianceMatrix',
                                            EnableLogging=False))
                        fit_results.addWorkspace(
                            IntegrateMDHistoWorkspace(
                                InputWorkspace=inWS,
                                P1Bin=f'{ll[1]},0,{ur[1]}',
                                P2Bin=f'{ll[0]},0,{ur[0]}',
                                P3Bin='0,{}'.format(
                                    mtd[inWS].getDimension(2).getNBins()),
                                OutputWorkspace=outWS + "_" + inWS + "_ROI",
                                EnableLogging=False))
                else:
                    self.log().warning(
                        "Skipping peak from {} because Signal/Noise={:.3f} which is less than {}"
                        .format(
                            inWS,
                            integrated_intensity / integrated_intensity_error,
                            signalNoiseMin))
            else:
                self.log().warning(
                    "Failed to fit workspace {}: Output Status={}, ChiSq={}".
                    format(inWS, fit_result.OutputStatus,
                           fit_result.OutputChi2overDoF))

            for tmp_ws in (tmp_inWS, tmp_inWS + '_Workspace',
                           tmp_inWS + '_Parameters',
                           tmp_inWS + '_NormalisedCovarianceMatrix'):
                if mtd.doesExist(tmp_ws):
                    DeleteWorkspace(tmp_ws, EnableLogging=False)

        self.setProperty("OutputWorkspace", mtd[outWS])