def fitted_in_tof(fitted_in_dspacing: Union[str, Workspace2D],
                      difc: Union[str, TableWorkspace],
                      output_workspace: str,
                      group_workspace: Union[str, WorkspaceGroup] = None):
        r"""
        Create a workspace of fitted spectra in TOF

        @param fitted_in_dspacing : workspace of fitted spectra in d-spacing
        @param difc : table of DIFC parameters
        @param output_workspace : name for the workspace of fitted spectra in TOF
        @param group_workspace : if provided, add `output_workspace` to `group_workspace`

        @returns reference to the `output_workspace`
        """
        dspacing_workspace, difc_workspace = mtd[str(fitted_in_dspacing)], mtd[
            str(difc)]

        # Validate number of histograms in fitted_in_dspacing is same as in difc
        error_message = f'{dspacing_workspace} and {difc_workspace} have different number of spectra'
        assert dspacing_workspace.getNumberHistograms(
        ) == difc_workspace.getNumberHistograms(), error_message

        # Divide fitted_in_dspacing by difc, and assign output_workspace to it
        output = Multiply(LHSWokspace=difc_workspace,
                          RHSWorkspace=dspacing_workspace,
                          OutputWorkspace=output_workspace)

        # if group_workspace is not None, add output_workspace to group_workspace
        if group_workspace is not None:
            mtd[str(group_workspace)].add(output_workspace)

        return output
Example #2
0
def correctForChopperOpenings(ws, directWS, names, cleanup, logging):
    """Correct reflectivity values if chopper openings between RB and DB differ."""
    def opening(instrumentName, logs, Xs):
        chopperGap = chopperPairDistance(logs, instrumentName)
        chopperPeriod = 60. / chopperSpeed(logs, instrumentName)
        openingAngle = chopperOpeningAngle(logs, instrumentName)
        return chopperGap * constants.m_n / constants.h / chopperPeriod * Xs * 1e-10 + openingAngle / 360.

    instrumentName = ws.getInstrument().getName()
    Xs = ws.readX(0)
    if ws.isHistogramData():
        Xs = (Xs[:-1] + Xs[1:]) / 2.
    reflectedOpening = opening(instrumentName, ws.run(), Xs)
    directOpening = opening(instrumentName, directWS.run(), Xs)
    corFactorWSName = names.withSuffix('chopper_opening_correction_factors')
    corFactorWS = CreateWorkspace(OutputWorkspace=corFactorWSName,
                                  DataX=ws.readX(0),
                                  DataY=directOpening / reflectedOpening,
                                  UnitX=ws.getAxis(0).getUnit().unitID(),
                                  ParentWorkspace=ws,
                                  EnableLogging=logging)
    correctedWSName = names.withSuffix('corrected_by_chopper_opening')
    correctedWS = Multiply(LHSWorkspace=ws,
                           RHSWorkspace=corFactorWS,
                           OutputWorkspace=correctedWSName,
                           EnableLogging=logging)
    cleanup.cleanup(corFactorWS)
    cleanup.cleanup(ws)
    return correctedWS
Example #3
0
 def monitorTransfit(self, files, foilType, divE):
     isFirstFile = True
     isSingleFile = len(files) == 1
     firstFileName = ""
     for file in files:
         discard, fileName = path.split(file)
         fnNoExt = path.splitext(fileName)[0]
         if isFirstFile:
             firstFileName = fnNoExt
         fileName_Raw = fnNoExt + '_raw'
         fileName_3 = fnNoExt + '_3'
         LoadRaw(Filename=file, OutputWorkspace=fileName_Raw)
         CropWorkspace(InputWorkspace=fileName_Raw, OutputWorkspace=fileName_Raw, XMin=100, XMax=19990)
         NormaliseByCurrent(InputWorkspace=fileName_Raw, OutputWorkspace=fileName_Raw)
         ExtractSingleSpectrum(InputWorkspace=fileName_Raw, OutputWorkspace=fileName_3, WorkspaceIndex=3)
         DeleteWorkspace(fileName_Raw)
         ConvertUnits(InputWorkspace=fileName_3, Target='Energy', OutputWorkspace=fileName_3)
         self.TransfitRebin(fileName_3, fileName_3, foilType, divE)
         if not isFirstFile:
             Plus(LHSWorkspace=firstFileName + '_3', RHSWorkspace=fileName_3, OutputWorkspace=firstFileName + '_3')
             DeleteWorkspace(fileName_3)
         else:
             isFirstFile = False
     if isSingleFile:
         RenameWorkspace(InputWorkspace=firstFileName + '_3', OutputWorkspace=firstFileName + '_monitor')
     else:
         noFiles = len(files) ** (-1)
         CreateSingleValuedWorkspace(OutputWorkspace='scale', DataValue=noFiles)
         Multiply(LHSWorkspace=firstFileName + '_3', RHSWorkspace='scale',
                  OutputWorkspace=firstFileName + '_monitor')
         DeleteWorkspace('scale')
         DeleteWorkspace(firstFileName + '_3')
Example #4
0
 def PyExec(self):
     input_ws = self.getProperty("InputWorkspace").value
     eff_ws = self.getProperty("DetectorEfficiencyWorkspace").value
     transposed = Transpose(InputWorkspace=eff_ws, StoreInADS=False)
     efficiencies = transposed.extractY().flatten()
     errors = transposed.extractE().flatten()
     n_hist = input_ws.getNumberHistograms()
     if n_hist % efficiencies.size != 0:
         raise ValueError(
             'Number of histograms in input workspace is not a multiple of number of entries in detector efficiency '
             'workspace.')
     n_time_indexes = n_hist / efficiencies.size
     to_multiply = CreateWorkspace(DataY=np.repeat(efficiencies,
                                                   n_time_indexes),
                                   DataE=np.repeat(errors, n_time_indexes),
                                   DataX=np.zeros(n_hist),
                                   NSpec=n_hist,
                                   StoreInADS=False)
     output = Multiply(
         LHSWorkspace=input_ws,
         RHSWorkspace=to_multiply,
         OutputWorkspace=self.getPropertyValue("OutputWorkspace"))
     # In the output we should mask the detectors where calibration constant is masked
     det_IDs = ''
     n_pixels_per_tube = eff_ws.getNumberHistograms()
     for spectrum in range(n_pixels_per_tube):
         if eff_ws.hasMaskedBins(spectrum):
             masked = eff_ws.maskedBinsIndices(spectrum)
             for bin in masked:
                 det_IDs += str(bin * n_pixels_per_tube + spectrum +
                                1) + ','
     if det_IDs:
         MaskDetectors(Workspace=output, DetectorList=det_IDs[:-1])
     self.setProperty("OutputWorkspace", output)
Example #5
0
 def performOperation(self):
     lhs_valid, rhs_valid, err_msg = self.validateInputs()
     if err_msg != str():
         return lhs_valid, rhs_valid, err_msg
     lhs_ws, rhs_ws = self._scale_input_workspaces()
     try:
         if self._operation == '+':
             if self._md_lhs or self._md_rhs:
                 PlusMD(LHSWorkspace=lhs_ws,
                        RHSWorkspace=rhs_ws,
                        OutputWorkspace=self._output_ws)
             else:
                 Plus(LHSWorkspace=lhs_ws,
                      RHSWorkspace=rhs_ws,
                      OutputWorkspace=self._output_ws)
         elif self._operation == '-':
             if self._md_lhs or self._md_rhs:
                 MinusMD(LHSWorkspace=lhs_ws,
                         RHSWorkspace=rhs_ws,
                         OutputWorkspace=self._output_ws)
             else:
                 Minus(LHSWorkspace=lhs_ws,
                       RHSWorkspace=rhs_ws,
                       OutputWorkspace=self._output_ws)
         elif self._operation == '*':
             if self._md_lhs or self._md_rhs:
                 MultiplyMD(LHSWorkspace=lhs_ws,
                            RHSWorkspace=rhs_ws,
                            OutputWorkspace=self._output_ws)
             else:
                 Multiply(LHSWorkspace=lhs_ws,
                          RHSWorkspace=rhs_ws,
                          OutputWorkspace=self._output_ws)
         elif self._operation == 'WM':
             if self._md_lhs or self._md_rhs:
                 WeightedMeanMD(LHSWorkspace=lhs_ws,
                                RHSWorkspace=rhs_ws,
                                OutputWorkspace=self._output_ws)
             else:
                 WeightedMean(InputWorkspace1=lhs_ws,
                              InputWorkspace2=rhs_ws,
                              OutputWorkspace=self._output_ws)
         else:
             if self._md_lhs or self._md_rhs:
                 DivideMD(LHSWorkspace=lhs_ws,
                          RHSWorkspace=rhs_ws,
                          OutputWorkspace=self._output_ws)
             else:
                 Divide(LHSWorkspace=lhs_ws,
                        RHSWorkspace=rhs_ws,
                        OutputWorkspace=self._output_ws)
     except (RuntimeError, ValueError) as err:
         return False, False, str(err)
     else:
         self._regularize_output_names(self._output_ws)
     finally:
         DeleteWorkspaces(WorkspaceList=[lhs_ws, rhs_ws])
     return True, True, ""
Example #6
0
 def _three_factor_corrections_approximation(self, sample_workspace,
                                             container_workspace,
                                             factor_workspaces):
     acc = factor_workspaces['acc']
     acsc = factor_workspaces['acsc']
     assc = factor_workspaces['assc']
     subtrahend = Multiply(container_workspace, (acsc / acc),
                           StoreInADS=False)
     difference = Minus(sample_workspace, subtrahend, StoreInADS=False)
     quotient = Divide(difference, assc, OutputWorkspace="__quotient")
     return quotient
Example #7
0
def _createMaskWS(ws, name, algorithmLogging):
    """Return a single bin workspace with same number of histograms as ws."""
    extractResult = ExtractMask(InputWorkspace=ws,
                                OutputWorkspace=name,
                                EnableLogging=algorithmLogging)
    zeroWS = CreateSingleValuedWorkspace(DataValue=0.,
                                         ErrorValue=0.,
                                         EnableLogging=algorithmLogging,
                                         StoreInADS=False)
    maskWS = Multiply(LHSWorkspace=extractResult.OutputWorkspace,
                      RHSWorkspace=zeroWS,
                      OutputWorkspace=name,
                      EnableLogging=algorithmLogging)
    return maskWS
Example #8
0
    def checkResults(self, eventCheck=False, xsection="AttenuationXSection"):
        # Check results

        Multiply(LHSWorkspace=self._input_wksp,
                 RHSWorkspace=self._correction_wksp,
                 OutputWorkspace=self._output_wksp)
        output_wksp = AnalysisDataService.retrieve(self._output_wksp)

        self.assertEqual(
            output_wksp.getAxis(0).getUnit().unitID(), 'Wavelength')
        self.assertAlmostEqual(output_wksp.readX(0)[79], 0.995)
        if eventCheck:
            self.assertAlmostEqual(output_wksp.readY(0)[79], 66.23970242900438)
        else:
            if xsection == "AttenuationXSection":
                self.assertAlmostEqual(output_wksp.readY(0)[79], 3250.28183501)
            if xsection == "TotalXSection":
                self.assertAlmostEqual(output_wksp.readY(0)[79], 3245.70148939)
def _subtractEC(ws, ecWS, ecScaling, wsNames, wsCleanup, algorithmLogging):
    """Subtract empty container."""
    # out = in - ecScaling * EC
    scalingWSName = wsNames.withSuffix('ecScaling')
    scalingWS = CreateSingleValuedWorkspace(OutputWorkspace=scalingWSName,
                                            DataValue=ecScaling,
                                            EnableLogging=algorithmLogging)
    scaledECWSName = wsNames.withSuffix('scaled_EC')
    scaledECWS = Multiply(LHSWorkspace=ecWS,
                          RHSWorkspace=scalingWS,
                          OutputWorkspace=scaledECWSName,
                          EnableLogging=algorithmLogging)
    ecSubtractedWSName = wsNames.withSuffix('EC_subtracted')
    ecSubtractedWS = Minus(LHSWorkspace=ws,
                           RHSWorkspace=scaledECWS,
                           OutputWorkspace=ecSubtractedWSName,
                           EnableLogging=algorithmLogging)
    wsCleanup.cleanup(scalingWS)
    wsCleanup.cleanup(scaledECWS)
    return ecSubtractedWS
Example #10
0
 def PyExec(self):
     input_ws = self.getProperty("InputWorkspace").value
     eff_ws = self.getProperty("DetectorEfficiencyWorkspace").value
     transposed = Transpose(InputWorkspace=eff_ws, StoreInADS=False)
     efficiencies = transposed.extractY().flatten()
     errors = transposed.extractE().flatten()
     n_hist = input_ws.getNumberHistograms()
     if n_hist % efficiencies.size != 0:
         raise ValueError(
             'Number of histograms in input workspace is not a multiple of number of entries in detector efficiency '
             'workspace.')
     n_time_indexes = n_hist / efficiencies.size
     to_multiply = CreateWorkspace(DataY=np.repeat(efficiencies,
                                                   n_time_indexes),
                                   DataE=np.repeat(errors, n_time_indexes),
                                   DataX=np.zeros(n_hist),
                                   NSpec=n_hist,
                                   StoreInADS=False)
     output = Multiply(
         LHSWorkspace=input_ws,
         RHSWorkspace=to_multiply,
         OutputWorkspace=self.getPropertyValue("OutputWorkspace"))
     self.setProperty("OutputWorkspace", output)
Example #11
0
def calc_absorption_corr_using_wksp(
    donor_wksp,
    abs_method,
    element_size=1,
    prefix_name="",
    cache_dirs=[],
):
    """
    Calculates absorption correction on the specified donor workspace. See the documentation
    for the ``calculate_absorption_correction`` function above for more details.

    :param donor_wksp: Input workspace to compute absorption correction on
    :param abs_method: Type of absorption correction: None, SampleOnly, SampleAndContainer, FullPaalmanPings
    :param element_size: Size of one side of the integration element cube in mm
    :param prefix_name: Optional prefix of the output workspaces, default is the donor_wksp name.
    :param cache_dirs: List of candidate cache directories to store cached abs workspace.

    :return: Two workspaces (A_s, A_c), the first for the sample and the second for the container
    """
    if abs_method == "None":
        return "", ""

    if isinstance(donor_wksp, str):
        if not mtd.doesExist(donor_wksp):
            raise RuntimeError(
                "Specified donor workspace not found in the ADS")
        donor_wksp = mtd[donor_wksp]

    absName = donor_wksp.name()
    if prefix_name != '':
        absName = prefix_name

    if abs_method == "SampleOnly":
        AbsorptionCorrection(donor_wksp,
                             OutputWorkspace=absName + '_ass',
                             ScatterFrom='Sample',
                             ElementSize=element_size)
        return absName + '_ass', ""
    elif abs_method == "SampleAndContainer":
        AbsorptionCorrection(donor_wksp,
                             OutputWorkspace=absName + '_ass',
                             ScatterFrom='Sample',
                             ElementSize=element_size)
        AbsorptionCorrection(donor_wksp,
                             OutputWorkspace=absName + '_acc',
                             ScatterFrom='Container',
                             ElementSize=element_size)
        return absName + '_ass', absName + '_acc'
    elif abs_method == "FullPaalmanPings":
        PaalmanPingsAbsorptionCorrection(donor_wksp,
                                         OutputWorkspace=absName,
                                         ElementSize=element_size)
        Multiply(LHSWorkspace=absName + '_acc',
                 RHSWorkspace=absName + '_assc',
                 OutputWorkspace=absName + '_ac')
        Divide(LHSWorkspace=absName + '_ac',
               RHSWorkspace=absName + '_acsc',
               OutputWorkspace=absName + '_ac')
        return absName + '_assc', absName + '_ac'
    else:
        raise ValueError(
            "Unrecognized absorption correction method '{}'".format(
                abs_method))
Example #12
0
def reduce_to_2theta(hb2b_builder,
                     pixel_matrix,
                     hb2b_data_ws_name,
                     counts_array,
                     mask_vec,
                     mask_ws_name,
                     num_bins=1000):
    """
    Reduce to 2theta with Masks
    :param hb2b_builder:
    :param pixel_matrix:
    :param hb2b_data_ws_name:
    :param counts_array:
    :param mask_vec:
    :param num_bins:
    :return:
    """
    # reduce by PyRS
    if False:
        pyrs_raw_ws = mtd[pyrs_raw_name]
        vec_counts = pyrs_raw_ws.readY(0)
    else:
        vec_counts = counts_array.astype('float64')

    # mask
    if mask_vec is not None:
        print(mask_vec.dtype)
        vec_counts.astype('float64')
        mask_vec.astype('float64')
        vec_counts *= mask_vec
    # reduce
    bin_edgets, histogram = hb2b_builder.reduce_to_2theta_histogram(
        pixel_matrix, vec_counts, num_bins)

    # create workspace
    pyrs_reduced_name = '{}_pyrs_reduced'.format(hb2b_data_ws_name)
    CreateWorkspace(DataX=bin_edgets,
                    DataY=histogram,
                    NSpec=1,
                    OutputWorkspace=pyrs_reduced_name)
    SaveNexusProcessed(InputWorkspace=pyrs_reduced_name,
                       Filename='{}.nxs'.format(pyrs_reduced_name),
                       Title='PyRS reduced: {}'.format(hb2b_data_ws_name))

    if True:
        # Mantid
        # transfer to 2theta for data
        two_theta_ws_name = '{}_2theta'.format(hb2b_data_ws_name)

        # Mask
        if mask_ws_name:
            # Multiply by masking workspace
            masked_ws_name = '{}_masked'.format(hb2b_data_ws_name)
            Multiply(LHSWorkspace=hb2b_data_ws_name,
                     RHSWorkspace=mask_ws_name,
                     OutputWorkspace=masked_ws_name,
                     ClearRHSWorkspace=False)
            hb2b_data_ws_name = masked_ws_name
            SaveNexusProcessed(InputWorkspace=hb2b_data_ws_name,
                               Filename='{}_raw.nxs'.format(hb2b_data_ws_name))
        # END-IF

        # # this is for test only!
        # ConvertSpectrumAxis(InputWorkspace=hb2b_data_ws_name, OutputWorkspace=two_theta_ws_name, Target='Theta',
        #                     OrderAxis=False)
        # Transpose(InputWorkspace=two_theta_ws_name, OutputWorkspace=two_theta_ws_name)
        # two_theta_ws = mtd[two_theta_ws_name]
        # for i in range(10):
        #     print ('{}: x = {}, y = {}'.format(i, two_theta_ws.readX(0)[i], two_theta_ws.readY(0)[i]))
        # for i in range(10010, 10020):
        #     print ('{}: x = {}, y = {}'.format(i, two_theta_ws.readX(0)[i], two_theta_ws.readY(0)[i]))

        ConvertSpectrumAxis(InputWorkspace=hb2b_data_ws_name,
                            OutputWorkspace=two_theta_ws_name,
                            Target='Theta')
        Transpose(InputWorkspace=two_theta_ws_name,
                  OutputWorkspace=two_theta_ws_name)
        # final:
        mantid_reduced_name = '{}_mtd_reduced'.format(hb2b_data_ws_name)
        ResampleX(InputWorkspace=two_theta_ws_name,
                  OutputWorkspace=mantid_reduced_name,
                  NumberBins=num_bins,
                  PreserveEvents=False)
        mantid_ws = mtd[mantid_reduced_name]

        SaveNexusProcessed(
            InputWorkspace=mantid_reduced_name,
            Filename='{}.nxs'.format(mantid_reduced_name),
            Title='Mantid reduced: {}'.format(hb2b_data_ws_name))

        plt.plot(mantid_ws.readX(0),
                 mantid_ws.readY(0),
                 color='blue',
                 mark='o')

    # END-IF

    plt.plot(bin_edgets[:-1], histogram, color='red')

    plt.show()

    return
            eff_ws = 'efficiency'
            CalculateEfficiencyCorrection(InputWorkspace=incident_ws,
                                          Alpha=-0.693,
                                          OutputWorkspace=eff_ws)
            ConvertToPointData(InputWorkspace=eff_ws, OutputWorkspace=eff_ws)

            ax_eff.plot(mtd[eff_ws],
                        '-',
                        color=color,
                        wkspIndex=0,
                        label=moderator + ' efficiency')

            sample_ws = 'sample_ws'
            Multiply(LHSWorkspace=incident_ws,
                     RHSWorkspace=eff_ws,
                     OutputWorkspace=sample_ws)

            ax_bm.plot(mtd[sample_ws],
                       'o',
                       color=color,
                       wkspIndex=0,
                       label=moderator + ' measurement')

        ax_bm.legend()
        ax_eff.legend()
        plt.show()

    exit()
    # ----------------------------------------------------------------------------------------- #
    # Fit incident spectrum