post, type='train') if threshold[c] is not None and artifact > threshold[c]: continue induction_grand, pulse_offset_ind = induction_summary( train_response, freqs, holding, thresh=sweep_threshold, ind_dict=induction_grand, offset_dict=pulse_offset_ind, uid=(expt.uid, pre, post)) recovery_grand, pulse_offset_rec = recovery_summary( train_response, rec_t, holding, thresh=sweep_threshold, rec_dict=recovery_grand, offset_dict=pulse_offset_rec, uid=(expt.uid, pre, post)) for f, freq in enumerate(freqs): if freq not in induction_grand.keys(): print("%d Hz not represented in data set for %s" % (freq, c_type)) continue ind_offsets = pulse_offset_ind[freq] qc_plot.clear() ind_pass_qc = train_qc(induction_grand[freq], ind_offsets, amp=qc_params[1][c], sign=qc_params[0], plot=qc_plot) n_synapses = len(ind_pass_qc[0])
train_cache_change.append(cache_change) if (50, 0.25) in [ (k[0], np.round(k[1], 2)) for k in train_response['responses'].keys() ]: grand_induction, offset_ind = induction_summary( train_response, freqs, holding, thresh=sweep_threshold, ind_dict=grand_induction, offset_dict=offset_ind) grand_recovery, offset_rec = recovery_summary( train_response, t_rec, holding, thresh=sweep_threshold, rec_dict=grand_recovery, offset_dict=offset_rec) if len(grand_pulse_response) > 0: grand_pulse_trace = TSeriesList(grand_pulse_response).mean() p2 = trace_plot(grand_pulse_trace, color=avg_color, plot=p2, x_range=[0, 27e-3], name=('n = %d' % len(grand_pulse_response))) if len(grand_induction) > 0: for f, freq in enumerate(freqs): if freq in grand_induction: offset = offset_ind[freq]
summary_plot[c, 1].addLegend() for expt in expt_list: if expt.connections is None: continue for pre, post in expt.connections: if [expt.uid, pre, post] in no_include: continue if expt.cells[pre].cre_type == cre_type[0] and expt.cells[post].cre_type == cre_type[1]: train_response, artifact = get_response(expt, pre, post, type='train') if threshold[c] is not None and artifact > threshold[c]: continue induction_grand, pulse_offset_ind = induction_summary(train_response, freqs, holding, thresh=sweep_threshold, ind_dict=induction_grand, offset_dict=pulse_offset_ind, uid=(expt.uid, pre, post)) recovery_grand, pulse_offset_rec = recovery_summary(train_response, rec_t, holding, thresh=sweep_threshold, rec_dict=recovery_grand, offset_dict=pulse_offset_rec, uid=(expt.uid, pre, post)) for f, freq in enumerate(freqs): if freq not in induction_grand.keys(): print ("%d Hz not represented in data set for %s" % (freq, c_type)) continue ind_offsets = pulse_offset_ind[freq] qc_plot.clear() ind_pass_qc = train_qc(induction_grand[freq], ind_offsets, amp=qc_params[1][c], sign=qc_params[0], plot=qc_plot) n_synapses = len(ind_pass_qc[0]) if n_synapses > 0: induction_grand_trace = TraceList(ind_pass_qc[0]).mean() ind_rec_grand_trace = TraceList(ind_pass_qc[1]).mean() ind_amp = train_amp(ind_pass_qc, ind_offsets, '+') ind_amp_grand = np.nanmean(ind_amp, 0)