Example #1
0
def mapping(t, state):
    # mapping
    # remove points
    angles = np.arange(lidar_angle_min,
                       lidar_angle_max + lidar_angle_increment - 1e-3,
                       lidar_angle_increment)
    ranges = lidar_ranges[:, t]
    valid = np.logical_and((ranges < lidar_range_max),
                           (ranges > lidar_range_min))
    angles = angles[valid]
    ranges = ranges[valid]

    # from lidar frame to world frame
    x_b = ranges * np.cos(angles)
    y_b = ranges * np.sin(angles)
    x_w = x_b * np.cos(theta) - y_b * np.sin(theta) + X
    y_w = x_b * np.sin(theta) + y_b * np.cos(theta) + Y
    x = cell(X, MAP)  # location of particle
    y = cell(Y, MAP)
    x_s = cell(x_w, MAP)  # locaiton of sensors beam
    y_s = cell(y_w, MAP)

    # build map
    for k in range(x_s.shape[0]):
        xb, yb = bresenham2D(x, y, x_s[k], y_s[k])
        indGood = np.logical_and((xb > 1), (yb > 1))
        MAP['map'][xb[indGood].astype(np.int16),
                   yb[indGood].astype(np.int16)] += np.log(4)  # MAP = 1

    indGood = np.logical_and((x_s > 1), (y_s > 1))
    MAP['map'][x_s[indGood], y_s[indGood]] -= np.log(4)  # MAP = 0
    MAP['map'][MAP['map'] > 0] = 0
    return MAP
Example #2
0
def mapping(grid, pose, scan, res, empty_odds, ocpy_odds):
    '''
    Update the grid map with log-odds.

    Args:
        grid (80, 80): grid map
        scan (1081,): lidar ranges
        pose (3,):  pose (x,y,theta)
        res (float or int): resolution
        empty_odds (float): empty odds
        ocpy_odds (float): occupied odds

    Returns:
        grid map (80, 80)
    '''
    # pixel value
    value = 127

    # convert from polar to Cartesian
    x, y = pol2cart(scan, pose[2])  # 1-d array

    # discretization (1-d array)
    xi = (x / res).astype(int)
    yi = (y / res).astype(int)

    wall_set = np.zeros_like(grid)
    empty_set = np.zeros_like(grid)
    for i in range(len(xi)):
        a, b = xi.item(i), yi.item(i)
        x1 = a + int(pose[0]) + grid.shape[0] // 2
        y1 = b + int(pose[1]) + grid.shape[1] // 2
        if 0 <= x1 < grid.shape[0] and 0 <= y1 < grid.shape[1]:
            wall_set[x1, y1] = 1

        line = np.array(bresenham2D(0, 0, a, b)).astype(int)
        for j in range(len(line[0]) - 1):
            x2 = line[0][j] + int(pose[0]) + grid.shape[0] // 2
            y2 = line[1][j] + int(pose[1]) + grid.shape[1] // 2
            if 0 <= x2 < grid.shape[0] and 0 <= y2 < grid.shape[1]:
                empty_set[x2, y2] = 1

    grid[wall_set == 1] += ocpy_odds
    grid[empty_set == 1] += empty_odds

    grid[grid >= value] = value
    grid[grid < -value] = -value

    return grid
Example #3
0
def mapupdate(MAP, xt, ranges, angles, bTl):
    # wTb -- body to world transform
    x_w = xt[0]
    y_w = xt[1]
    theta_w = xt[2]
    wTb = np.array([[np.cos(theta_w), -np.sin(theta_w), 0, x_w],
                    [np.sin(theta_w), np.cos(theta_w), 0, y_w], [0, 0, 1, 0],
                    [0, 0, 0, 1]])

    # start point of laser beam in grid units in world frame
    sx = np.ceil((x_w - MAP['xmin']) / MAP['res']).astype(np.int16) - 1
    sy = np.ceil((y_w - MAP['ymin']) / MAP['res']).astype(np.int16) - 1

    # end point of laser beam in phisical units in laser frame
    ex = ranges * np.cos(angles)
    ey = ranges * np.sin(angles)
    # convert to homogenized coordinates
    s_h = np.ones((4, np.size(ex)))
    s_h[0, :] = ex
    s_h[1, :] = ey
    s_h[2, :] = 0.51435
    # transformed into world frame
    s_h = np.dot(wTb, np.dot(bTl, s_h))
    # end point of laser beam in grid units in world frame
    ex = s_h[0, :]
    ey = s_h[1, :]
    ex = np.ceil((ex - MAP['xmin']) / MAP['res']).astype(np.int16) - 1
    ey = np.ceil((ey - MAP['ymin']) / MAP['res']).astype(np.int16) - 1

    # for each laser scan update the map
    for i in range(np.size(ranges)):
        passed_points = map_utils.bresenham2D(sx, sy, ex[i], ey[i])
        xis = passed_points[0, :].astype(np.int16)
        yis = passed_points[1, :].astype(np.int16)
        indGood = np.logical_and(
            np.logical_and(np.logical_and((xis > 1), (yis > 1)),
                           (xis < MAP['sizex'])), (yis < MAP['sizey']))

        # update the log-odds map
        MAP['map'][xis[indGood], yis[indGood]] += np.log(1 / 4)
        # MAP['map'][xis,yis] += np.log(1/4)
        if ((ex[i] > 1) and (ex[i] < MAP['sizex']) and (ey[i] > 1)
                and (ey[i] < MAP['sizey'])):
            MAP['map'][ex[i], ey[i]] += 2 * np.log(4)

    # limit the range to prevent over-confidence
    MAP['map'] = np.clip(MAP['map'], 10 * np.log(1 / 4), 10 * np.log(4))
    return MAP
def mapping(lamda,originx,originy, scanx,scany):
    ratio = 4
    map2D = []
    for i in range(len(scanx)):
        map2D.append(bresenham2D(originx,originy,scanx[i],scany[i]))
        
    for k in map2D:
        [m,n] = np.shape(k)
        for j in range(n):
#            if k[0,j] <1601 and k[1,j] < 1601:
            if j != n-1:    
                lamda[int(k[0,j]),int(k[1,j])] = lamda[int(k[0,j]),int(k[1,j])] + math.log(1/ratio)
            else:
                lamda[int(k[0,j]),int(k[1,j])] = lamda[int(k[0,j]),int(k[1,j])] + math.log(ratio)

    return lamda
def mapping_particle(logodds, z, x, y, theta):
    wTb = np.matrix([[np.cos(theta), -np.sin(theta), x],
                     [np.sin(theta), np.cos(theta), y], [0, 1, 0]])
    zb = np.matrix(
        (z * np.cos(angles), z * np.sin(angles), np.ones(angles.shape)))
    zw = wTb * zb
    x = x / MAP['res'] + MAP['sizex'] / 2
    y = y / MAP['res'] + MAP['sizey'] / 2
    zw[0] = zw[0] / MAP['res'] + MAP['sizex'] / 2
    zw[1] = zw[1] / MAP['res'] + MAP['sizey'] / 2
    for i in range(len(angles)):
        x1, y1 = map_utils.bresenham2D(x, y, zw[0, i], zw[1, i])
        for j, k in zip(x1[:-1], y1[:-1]):
            logodds[int(j), int(k)] -= 2
        logodds[int(x1[-1]), int(
            y1[-1])] += 2  #If this fails, enlarge the map size. (physicalsize)
    np.clip(logodds, -logodds_thresh, logodds_thresh, out=logodds)
    return logodds
Example #6
0
def mapping(log_odd, b_4, best_particle, w_T_b_best, MAP, b=4):

    occu_max = 30
    occu_min = -30
    body_point = b_4
    world_point = np.dot(w_T_b_best, body_point)
    #bool_position = world_point[2,:] >0 #>= 0.1 + 0.93
    #world_point = world_point[:, bool_position]
    x_particle = np.ceil(
        (best_particle[0] - MAP['xmin']) / MAP['res']).astype(np.int16) - 1
    y_particle = np.ceil(
        (best_particle[1] - MAP['ymin']) / MAP['res']).astype(np.int16) - 1

    for i in range(world_point.shape[1]):
        ex = np.ceil((world_point[0, i] - MAP['xmin']) / MAP['res']).astype(
            np.int16) - 1  #in map coordinate to the pixel
        ey = np.ceil((world_point[1, i] - MAP['ymin']) / MAP['res']).astype(
            np.int16) - 1  #in map coordinate to the pixel
        if ex > 1 and ey > 1 and ex < MAP['sizex'] and ey < MAP['sizey']:
            pass
        else:
            continue
        scan_section = map_utils.bresenham2D(
            x_particle.item(), y_particle.item(), ex.item(),
            ey.item())  #a beam section for just one end
        scan_section = scan_section.astype(int)

        log_odd[scan_section[0][-1], scan_section[1][-1:]] = \
         log_odd[scan_section[0][-1], scan_section[1][-1]] + math.log(b)

        log_odd[scan_section[0][1:-1], scan_section[1][1:-1]] = \
         log_odd[scan_section[0][1:-1], scan_section[1][1:-1]] + math.log(1 / b)
    log_odd[log_odd > occu_max] = occu_max
    log_odd[log_odd < occu_min] = occu_min
    P_occupied = 1 - expit(-log_odd)
    bool_occupied_cells = P_occupied > 0.5
    bool_free_cells = P_occupied < 0.5
    mt = bool_free_cells * (-1) + bool_occupied_cells * 1

    return log_odd, mt
def mapping(grid, lidar_scan, now, res, angle):
    valid_scan = np.logical_and(lidar_scan >= 0.1, lidar_scan <= 30)
    #valid_idx, = np.where(valid_scan==True)

    empty_odds = np.log(0.9 / 0.1)
    occuy_odds = np.log(0.9 / 0.1)

    range_valid = lidar_scan[valid_scan]
    theta = angle[valid_scan] + now[2]
    x = range_valid * np.cos(theta)
    y = range_valid * np.sin(theta)

    x_cell = (x / res).astype(int)
    y_cell = (y / res).astype(int)
    e_cell = {}
    o_cell = {}
    for (a, b) in zip(x_cell, y_cell):
        lines = bresenham2D(0, 0, a, b).astype(int)
        xx = a + int(now[0]) + grid.shape[0] // 2
        yy = b + int(now[1]) + grid.shape[1] // 2

        o_cell[(xx, yy)] = True
        for i in range(len(lines[0]) - 1):  # the last col is wall
            e_cell[lines[0, i], lines[1, i]] = True

    for k, _ in o_cell.items():
        if 0 <= k[0] < grid.shape[0] and 0 <= k[1] < grid.shape[1]:
            grid[k[0], k[1]] += occuy_odds

    for k, _ in e_cell.items():
        xxx = k[0] + int(now[0]) + grid.shape[0] // 2
        yyy = k[1] + int(now[1]) + grid.shape[1] // 2
        if 0 <= xxx < grid.shape[0] and 0 <= yyy < grid.shape[1]:
            grid[xxx, yyy] -= empty_odds
    sat = 127
    grid[grid > sat] = sat
    grid[grid < -sat] = -sat

    return grid
Example #8
0
def mapping(grid, scan, now, res, map_angles):
    free_odds = np.log(0.9 / 0.1) / 4
    occup_odds = np.log(0.9 / 0.1)
    saturated = 127
    #valid = valid_scan(scan, map_angles)
    distance = scan
    theta = map_angles + now[2]
    x, y = distance * np.cos(theta), distance * np.sin(theta)

    xi = (x / res).astype(int)
    yi = (y / res).astype(int)

    free_set = {}
    wall_set = {}

    for (a, b) in zip(xi, yi):
        line = np.array(bresenham2D(0, 0, a, b)).astype(int)
        xx = a + int(now[0]) + grid.shape[0] // 2
        yy = b + int(now[1]) + grid.shape[1] // 2
        wall_set[xx, yy] = True
        for j in range(len(line[0]) - 1):
            free_set[(line[0][j], line[1][j])] = True

    for k, _ in wall_set.items():
        xx, yy = k[0], k[1]
        if 0 <= xx < grid.shape[0] and 0 <= yy < grid.shape[1]:
            grid[xx, yy] += occup_odds
            #print('xx,yy', xx,yy)
    for k, _ in free_set.items():
        xx = k[0] + int(now[0]) + grid.shape[0] // 2
        yy = k[1] + int(now[1]) + grid.shape[1] // 2
        if 0 <= xx < grid.shape[0] and 0 <= yy < grid.shape[1]:
            grid[xx, yy] -= free_odds

    grid[grid > saturated] = saturated
    grid[grid < -saturated] = -saturated

    return grid
Example #9
0
         lidar_stamps[count[2]]
     ])
     count[arg] = count[arg] + 1
     # encoder
     if arg == 0:
         # time difference
         tau = encoder_stamps[count[0] + 1] - encoder_stamps[count[0]]
         [X, Y, theta] = state
         u = drive_model(yaw, encoder_counts[:, count[0] + 1], tau)
         state_0 = state
         state = state + u
         # trajectory
         xt = cell(state[0], MAP)
         yt = cell(state[1], MAP)
         xtp = cell(state_0[0], MAP)
         ytp = cell(state_0[1], MAP)
         x_i, y_i = bresenham2D(xtp, ytp, xt, yt).astype(int)
         MAP['track'][x_i, y_i] = -2000
         traj.append(state)
     elif arg == 1:
         [_, _, yaw1] = imu_angular_velocity[:, count[1]]
         [_, _, yaw2] = imu_angular_velocity[:, count[1] - 1]
         yaw = (yaw1 + yaw2) / 2
     else:
         MAP = mapping(count[2], state)
         if count[2] % 100 == 0:  # show progress
             print(count[2], 'lidar stamps')
 plt.figure(figsize=(10, 10))
 trajectory = np.asarray(traj)
 plt.plot(trajectory[:, 0], trajectory[:, 1], '.k')
 plt.savefig('dead%d.png' % dataset)