def showOnMap(address,locName,color): mplt.register_api_key('AIzaSyAnRmqg-kRi7wBE_v1wkujL12RqQV2dGIA') googleAddress, lat,lng = getLocation(address) data = pd.DataFrame({ 'latitude':lat, 'longitude':lng, 'color':color, 'name':locName }) mplt.plot_markers(data)
def mapsplot_register(): """ mapsplotlib Google Static Maps API key to enable queries to Google. """ try: with open('data/api_key.txt', mode='r') as f: API_key = f.readline().strip() mplt.register_api_key(API_key) logger.info("Google static map API_KEY successfully registered") except: logger.error("mplt.register API_KEY failed") raise
from mapsplotlib import mapsplot as mplt import pandas as pd if __name__ == '__main__': mplt.register_api_key('AIzaSyBuhS-obrP54G_ToqQAn3rnDY4hLxjy3Z4') with open( "../dataset/yelp_academic_dataset_business.json") as business_file: df = pd.read_json(business_file, lines=True) df = df[df['city'] == 'Phoenix'] mplt.density_plot(df['latitude'], df['longitude'])
import pandas as pd from mapsplotlib import mapsplot as mplt def string_to_coordinate_pair(input): spl = input.split(",") return (float(spl[0]), float(spl[1])) f = open("googlemapskey.txt") apikey = f.readline()[0:-1] mplt.register_api_key(apikey) data = pd.read_csv("2018-05-24T04.59.44.000.in", sep="\t", index_col=False, encoding="ISO-8859-1") points = set() for idx, row in data.iterrows(): split = row["path"].split(" ") #print(split) path = [string_to_coordinate_pair(x) for x in split[1:]] points |= set([path[0], path[-1]]) print(len(points)) dct = {'latitude': [], 'longitude': []} for point in points: dct['latitude'].append(point[0]) dct['longitude'].append(point[1]) df = pd.DataFrame(data=dct) mplt.density_plot(df['latitude'], df['longitude'])
with open('openrice_data.json') as json_data: original_data = json.load(json_data) #get coords for obj in original_data: lats.append(obj['address'][0]) longs.append(obj['address'][1]) #get names for obj in original_data: names.append(obj['name']) # for x in range( len(lats) ): # temp = (lats[x], longs[x], reviews[x]) # combo.append(temp) # labels = ['latitude', 'longitude', 'reviews'] # df = pd.DataFrame.from_records(combo, columns=labels) mplt.register_api_key('AIzaSyBWMZIWfp9p0bdqqDoEuJN3D4IuVKtUttU') ## Getting data and filtering ## Please register your key and design the correct query key = "AIzaSyBWMZIWfp9p0bdqqDoEuJN3D4IuVKtUttU" query = "" # you might want a for loop to send and receive the query url = "https://maps.googleapis.com/maps/api/distancematrix/json?" + query res = requests.get(url).json()
import csv import string import pandas as pd import matplotlib.pyplot as plt from mapsplotlib import mapsplot as mplt mplt.register_api_key('AIzaSyC23WZ06xZau9Gw2R_ulYm6f0L5uxLdAeM') def map(file_ext): print('Generating Map') f = open('distances_latlon'+file_ext+'.csv', 'r') reader = csv.reader(f) cities_list = list(reader) f.close() cities_lat = [] cities_lon = [] color = [] size = [] marker_list = [] Upper = list(string.ascii_uppercase) digits = list(string.digits) markers = Upper+digits for i in range(len(cities_list)): cities_lat.append(float(cities_list[i][0])) cities_lon.append(float(cities_list[i][1])) color.append('blue') size.append('medium')
''' This is the only separated file since you need python 2.x to run it, activate the python 2.x env to make it work ''' from utilities.twitterparser import Twitter_Parser from mapsplotlib import mapsplot as mplt from utilities.env import * parser = Twitter_Parser() tweets_with_location = parser.get_location_tweets(remove_locality=True) mplt.register_api_key(maps_api_key) mplt.density_plot(tweets_with_location['latitude'], tweets_with_location['longitude'])
#!/usr/bin/env # -*- coding: utf-8 -*- __author__ = "Powen Ko, www.powenko.com" import pandas as pd from mapsplotlib import mapsplot as mplt df = pd.read_csv("data.csv") mplt.register_api_key('your_google_api_key_here') mplt.density_plot(df['latitude'], df['longitude'])
from mapsplotlib import mapsplot as mplt import matplotlib.pyplot as plt import numpy as np import pandas as pd from scipy.io import loadmat mplt.register_api_key('xxx') # xxx = your Google api key fileLines_survey = 'lines_survey' survey_data = loadmat('Lines/' + fileLines_survey + '.mat') east_survey = survey_data['lines_survey'][:, 0] north_survey = survey_data['lines_survey'][:, 1] z_survey = survey_data['lines_survey'][:, 2] eastn = east_survey[~np.isnan(east_survey)] northn = north_survey[~np.isnan(north_survey)] zn = z_survey[~np.isnan(z_survey)] d_utm = {'east': eastn, 'north': northn, 'value': zn} df_utm = pd.DataFrame(data=d_utm) mplt.scatter_with_utm(df_utm['east'], df_utm['north'], df_utm['value'], 29, 'N', maptype='satellite', cbar=True, title='Some Survey', cLabel='Val',