def video_job_info(s3_bucket, s3_prefix, aws_region):
    dir_path = os.path.dirname(os.path.realpath(__file__))
    pip_path = "{}/test_data/pip.mp4".format(dir_path)
    mainview_path = "{}/test_data/45degree.mp4".format(dir_path)
    topview_path = "{}/test_data/simtrace.mp4".format(dir_path)
    for filepath in (pip_path, mainview_path, topview_path):
        with open(filepath, "w") as filepointer:
            filepointer.write("")
    return [IterationData('pip', s3_bucket, s3_prefix, aws_region, pip_path),
            IterationData('45degree', s3_bucket, s3_prefix, aws_region, mainview_path),
            IterationData('topview', s3_bucket, s3_prefix, aws_region, topview_path)]
Example #2
0
def main():
    """ Main function for tournament worker """
    parser = argparse.ArgumentParser()
    parser.add_argument('-p',
                        '--preset',
                        help="(string) Name of a preset to run \
                             (class name from the 'presets' directory.)",
                        type=str,
                        required=False)
    parser.add_argument('--s3_bucket',
                        help='list(string) S3 bucket',
                        type=str,
                        nargs='+',
                        default=rospy.get_param("MODEL_S3_BUCKET",
                                                ["gsaur-test"]))
    parser.add_argument('--s3_prefix',
                        help='list(string) S3 prefix',
                        type=str,
                        nargs='+',
                        default=rospy.get_param("MODEL_S3_PREFIX",
                                                ["sagemaker"]))
    parser.add_argument('--aws_region',
                        help='(string) AWS region',
                        type=str,
                        default=rospy.get_param("AWS_REGION", "us-east-1"))
    parser.add_argument('--number_of_trials',
                        help='(integer) Number of trials',
                        type=int,
                        default=int(rospy.get_param("NUMBER_OF_TRIALS", 10)))
    parser.add_argument(
        '-c',
        '--local_model_directory',
        help='(string) Path to a folder containing a checkpoint \
                             to restore the model from.',
        type=str,
        default='./checkpoint')
    parser.add_argument('--number_of_resets',
                        help='(integer) Number of resets',
                        type=int,
                        default=int(rospy.get_param("NUMBER_OF_RESETS", 0)))
    parser.add_argument('--penalty_seconds',
                        help='(float) penalty second',
                        type=float,
                        default=float(rospy.get_param("PENALTY_SECONDS", 2.0)))
    parser.add_argument('--job_type',
                        help='(string) job type',
                        type=str,
                        default=rospy.get_param("JOB_TYPE", "EVALUATION"))
    parser.add_argument('--is_continuous',
                        help='(boolean) is continous after lap completion',
                        type=bool,
                        default=utils.str2bool(
                            rospy.get_param("IS_CONTINUOUS", False)))
    parser.add_argument('--race_type',
                        help='(string) Race type',
                        type=str,
                        default=rospy.get_param("RACE_TYPE", "TIME_TRIAL"))
    parser.add_argument('--off_track_penalty',
                        help='(float) off track penalty second',
                        type=float,
                        default=float(rospy.get_param("OFF_TRACK_PENALTY",
                                                      2.0)))
    parser.add_argument('--collision_penalty',
                        help='(float) collision penalty second',
                        type=float,
                        default=float(rospy.get_param("COLLISION_PENALTY",
                                                      5.0)))

    args = parser.parse_args()
    arg_s3_bucket = args.s3_bucket
    arg_s3_prefix = args.s3_prefix
    logger.info("S3 bucket: %s \n S3 prefix: %s", arg_s3_bucket, arg_s3_prefix)

    # tournament_worker: names to be displayed in MP4.
    # This is racer alias in tournament worker case.
    display_names = rospy.get_param('DISPLAY_NAME', "")

    metrics_s3_buckets = rospy.get_param('METRICS_S3_BUCKET')
    metrics_s3_object_keys = rospy.get_param('METRICS_S3_OBJECT_KEY')

    arg_s3_bucket, arg_s3_prefix = utils.force_list(
        arg_s3_bucket), utils.force_list(arg_s3_prefix)
    metrics_s3_buckets = utils.force_list(metrics_s3_buckets)
    metrics_s3_object_keys = utils.force_list(metrics_s3_object_keys)

    validate_list = [
        arg_s3_bucket, arg_s3_prefix, metrics_s3_buckets,
        metrics_s3_object_keys
    ]

    simtrace_s3_bucket = rospy.get_param('SIMTRACE_S3_BUCKET', None)
    mp4_s3_bucket = rospy.get_param('MP4_S3_BUCKET', None)
    if simtrace_s3_bucket:
        simtrace_s3_object_prefix = rospy.get_param('SIMTRACE_S3_PREFIX')
        simtrace_s3_bucket = utils.force_list(simtrace_s3_bucket)
        simtrace_s3_object_prefix = utils.force_list(simtrace_s3_object_prefix)
        validate_list.extend([simtrace_s3_bucket, simtrace_s3_object_prefix])
    if mp4_s3_bucket:
        mp4_s3_object_prefix = rospy.get_param('MP4_S3_OBJECT_PREFIX')
        mp4_s3_bucket = utils.force_list(mp4_s3_bucket)
        mp4_s3_object_prefix = utils.force_list(mp4_s3_object_prefix)
        validate_list.extend([mp4_s3_bucket, mp4_s3_object_prefix])

    if not all([lambda x: len(x) == len(validate_list[0]), validate_list]):
        utils.log_and_exit(
            "Eval worker error: Incorrect arguments passed: {}".format(
                validate_list), utils.SIMAPP_SIMULATION_WORKER_EXCEPTION,
            utils.SIMAPP_EVENT_ERROR_CODE_500)
    if args.number_of_resets != 0 and args.number_of_resets < MIN_RESET_COUNT:
        raise GenericRolloutException(
            "number of resets is less than {}".format(MIN_RESET_COUNT))

    # Instantiate Cameras
    if len(arg_s3_bucket) == 1:
        configure_camera(namespaces=['racecar'])
    else:
        configure_camera(namespaces=[
            'racecar_{}'.format(str(agent_index))
            for agent_index in range(len(arg_s3_bucket))
        ])

    agent_list = list()
    s3_bucket_dict = dict()
    s3_prefix_dict = dict()
    s3_writers = list()

    # tournament_worker: list of required S3 locations
    simtrace_s3_bucket_dict = dict()
    simtrace_s3_prefix_dict = dict()
    metrics_s3_bucket_dict = dict()
    metrics_s3_obect_key_dict = dict()
    mp4_s3_bucket_dict = dict()
    mp4_s3_object_prefix_dict = dict()

    for agent_index, s3_bucket_val in enumerate(arg_s3_bucket):
        agent_name = 'agent' if len(arg_s3_bucket) == 1 else 'agent_{}'.format(
            str(agent_index))
        racecar_name = 'racecar' if len(
            arg_s3_bucket) == 1 else 'racecar_{}'.format(str(agent_index))
        s3_bucket_dict[agent_name] = arg_s3_bucket[agent_index]
        s3_prefix_dict[agent_name] = arg_s3_prefix[agent_index]

        # tournament_worker: remap key with agent_name instead of agent_index for list of S3 locations.
        simtrace_s3_bucket_dict[agent_name] = simtrace_s3_bucket[agent_index]
        simtrace_s3_prefix_dict[agent_name] = simtrace_s3_object_prefix[
            agent_index]
        metrics_s3_bucket_dict[agent_name] = metrics_s3_buckets[agent_index]
        metrics_s3_obect_key_dict[agent_name] = metrics_s3_object_keys[
            agent_index]
        mp4_s3_bucket_dict[agent_name] = mp4_s3_bucket[agent_index]
        mp4_s3_object_prefix_dict[agent_name] = mp4_s3_object_prefix[
            agent_index]

        s3_client = SageS3Client(bucket=arg_s3_bucket[agent_index],
                                 s3_prefix=arg_s3_prefix[agent_index],
                                 aws_region=args.aws_region)

        # Load the model metadata
        if not os.path.exists(os.path.join(CUSTOM_FILES_PATH, agent_name)):
            os.makedirs(os.path.join(CUSTOM_FILES_PATH, agent_name))
        model_metadata_local_path = os.path.join(
            os.path.join(CUSTOM_FILES_PATH, agent_name), 'model_metadata.json')
        utils.load_model_metadata(
            s3_client,
            os.path.normpath("%s/model/model_metadata.json" %
                             arg_s3_prefix[agent_index]),
            model_metadata_local_path)
        # Handle backward compatibility
        _, _, version = parse_model_metadata(model_metadata_local_path)
        if float(version) < float(utils.SIMAPP_VERSION) and \
        not utils.has_current_ckpnt_name(arg_s3_bucket[agent_index], arg_s3_prefix[agent_index], args.aws_region):
            utils.make_compatible(arg_s3_bucket[agent_index],
                                  arg_s3_prefix[agent_index], args.aws_region,
                                  SyncFiles.TRAINER_READY.value)

        # Select the optimal model
        utils.do_model_selection(s3_bucket=arg_s3_bucket[agent_index],
                                 s3_prefix=arg_s3_prefix[agent_index],
                                 region=args.aws_region)

        # Download hyperparameters from SageMaker
        if not os.path.exists(agent_name):
            os.makedirs(agent_name)
        hyperparameters_file_success = False
        hyperparams_s3_key = os.path.normpath(arg_s3_prefix[agent_index] +
                                              "/ip/hyperparameters.json")
        hyperparameters_file_success = s3_client.download_file(
            s3_key=hyperparams_s3_key,
            local_path=os.path.join(agent_name, "hyperparameters.json"))
        sm_hyperparams_dict = {}
        if hyperparameters_file_success:
            logger.info("Received Sagemaker hyperparameters successfully!")
            with open(os.path.join(agent_name,
                                   "hyperparameters.json")) as file:
                sm_hyperparams_dict = json.load(file)
        else:
            logger.info("SageMaker hyperparameters not found.")

        agent_config = {
            'model_metadata': model_metadata_local_path,
            ConfigParams.CAR_CTRL_CONFIG.value: {
                ConfigParams.LINK_NAME_LIST.value: [
                    link_name.replace('racecar', racecar_name)
                    for link_name in LINK_NAMES
                ],
                ConfigParams.VELOCITY_LIST.value: [
                    velocity_topic.replace('racecar', racecar_name)
                    for velocity_topic in VELOCITY_TOPICS
                ],
                ConfigParams.STEERING_LIST.value: [
                    steering_topic.replace('racecar', racecar_name)
                    for steering_topic in STEERING_TOPICS
                ],
                ConfigParams.CHANGE_START.value:
                utils.str2bool(rospy.get_param('CHANGE_START_POSITION',
                                               False)),
                ConfigParams.ALT_DIR.value:
                utils.str2bool(
                    rospy.get_param('ALTERNATE_DRIVING_DIRECTION', False)),
                ConfigParams.ACTION_SPACE_PATH.value:
                'custom_files/' + agent_name + '/model_metadata.json',
                ConfigParams.REWARD.value:
                reward_function,
                ConfigParams.AGENT_NAME.value:
                racecar_name,
                ConfigParams.VERSION.value:
                version,
                ConfigParams.NUMBER_OF_RESETS.value:
                args.number_of_resets,
                ConfigParams.PENALTY_SECONDS.value:
                args.penalty_seconds,
                ConfigParams.NUMBER_OF_TRIALS.value:
                args.number_of_trials,
                ConfigParams.IS_CONTINUOUS.value:
                args.is_continuous,
                ConfigParams.RACE_TYPE.value:
                args.race_type,
                ConfigParams.COLLISION_PENALTY.value:
                args.collision_penalty,
                ConfigParams.OFF_TRACK_PENALTY.value:
                args.off_track_penalty
            }
        }

        metrics_s3_config = {
            MetricsS3Keys.METRICS_BUCKET.value:
            metrics_s3_buckets[agent_index],
            MetricsS3Keys.METRICS_KEY.value:
            metrics_s3_object_keys[agent_index],
            # Replaced rospy.get_param('AWS_REGION') to be equal to the argument being passed
            # or default argument set
            MetricsS3Keys.REGION.value:
            args.aws_region,
            # Replaced rospy.get_param('MODEL_S3_BUCKET') to be equal to the argument being passed
            # or default argument set
            MetricsS3Keys.STEP_BUCKET.value:
            arg_s3_bucket[agent_index],
            # Replaced rospy.get_param('MODEL_S3_PREFIX') to be equal to the argument being passed
            # or default argument set
            MetricsS3Keys.STEP_KEY.value:
            os.path.join(arg_s3_prefix[agent_index],
                         EVALUATION_SIMTRACE_DATA_S3_OBJECT_KEY)
        }
        aws_region = rospy.get_param('AWS_REGION', args.aws_region)
        s3_writer_job_info = []
        if simtrace_s3_bucket:
            s3_writer_job_info.append(
                IterationData(
                    'simtrace', simtrace_s3_bucket[agent_index],
                    simtrace_s3_object_prefix[agent_index], aws_region,
                    os.path.join(
                        ITERATION_DATA_LOCAL_FILE_PATH, agent_name,
                        IterationDataLocalFileNames.
                        SIM_TRACE_EVALUATION_LOCAL_FILE.value)))
        if mp4_s3_bucket:
            s3_writer_job_info.extend([
                IterationData(
                    'pip', mp4_s3_bucket[agent_index],
                    mp4_s3_object_prefix[agent_index], aws_region,
                    os.path.join(
                        ITERATION_DATA_LOCAL_FILE_PATH, agent_name,
                        IterationDataLocalFileNames.
                        CAMERA_PIP_MP4_VALIDATION_LOCAL_PATH.value)),
                IterationData(
                    '45degree', mp4_s3_bucket[agent_index],
                    mp4_s3_object_prefix[agent_index], aws_region,
                    os.path.join(
                        ITERATION_DATA_LOCAL_FILE_PATH, agent_name,
                        IterationDataLocalFileNames.
                        CAMERA_45DEGREE_MP4_VALIDATION_LOCAL_PATH.value)),
                IterationData(
                    'topview', mp4_s3_bucket[agent_index],
                    mp4_s3_object_prefix[agent_index], aws_region,
                    os.path.join(
                        ITERATION_DATA_LOCAL_FILE_PATH, agent_name,
                        IterationDataLocalFileNames.
                        CAMERA_TOPVIEW_MP4_VALIDATION_LOCAL_PATH.value))
            ])

        s3_writers.append(S3Writer(job_info=s3_writer_job_info))
        run_phase_subject = RunPhaseSubject()
        agent_list.append(
            create_rollout_agent(agent_config,
                                 EvalMetrics(agent_name, metrics_s3_config),
                                 run_phase_subject))
    agent_list.append(create_obstacles_agent())
    agent_list.append(create_bot_cars_agent())
    # ROS service to indicate all the robomaker markov packages are ready for consumption
    signal_robomaker_markov_package_ready()

    PhaseObserver('/agent/training_phase', run_phase_subject)

    graph_manager, _ = get_graph_manager(hp_dict=sm_hyperparams_dict,
                                         agent_list=agent_list,
                                         run_phase_subject=run_phase_subject)

    ds_params_instance = S3BotoDataStoreParameters(
        aws_region=args.aws_region,
        bucket_names=s3_bucket_dict,
        base_checkpoint_dir=args.local_model_directory,
        s3_folders=s3_prefix_dict)

    graph_manager.data_store = S3BotoDataStore(params=ds_params_instance,
                                               graph_manager=graph_manager,
                                               ignore_lock=True)
    graph_manager.env_params.seed = 0

    task_parameters = TaskParameters()
    task_parameters.checkpoint_restore_path = args.local_model_directory

    tournament_worker(graph_manager=graph_manager,
                      number_of_trials=args.number_of_trials,
                      task_parameters=task_parameters,
                      s3_writers=s3_writers,
                      is_continuous=args.is_continuous)

    # tournament_worker: write race report to local file.
    write_race_report(graph_manager,
                      model_s3_bucket_map=s3_bucket_dict,
                      model_s3_prefix_map=s3_prefix_dict,
                      metrics_s3_bucket_map=metrics_s3_bucket_dict,
                      metrics_s3_key_map=metrics_s3_obect_key_dict,
                      simtrace_s3_bucket_map=simtrace_s3_bucket_dict,
                      simtrace_s3_prefix_map=simtrace_s3_prefix_dict,
                      mp4_s3_bucket_map=mp4_s3_bucket_dict,
                      mp4_s3_prefix_map=mp4_s3_object_prefix_dict,
                      display_names=display_names)

    # tournament_worker: terminate tournament_race_node.
    terminate_tournament_race()
def main():
    screen.set_use_colors(False)
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '-c',
        '--checkpoint_dir',
        help=
        '(string) Path to a folder containing a checkpoint to restore the model from.',
        type=str,
        default='./checkpoint')
    parser.add_argument('--s3_bucket',
                        help='(string) S3 bucket',
                        type=str,
                        default=rospy.get_param("SAGEMAKER_SHARED_S3_BUCKET",
                                                "gsaur-test"))
    parser.add_argument('--s3_prefix',
                        help='(string) S3 prefix',
                        type=str,
                        default=rospy.get_param("SAGEMAKER_SHARED_S3_PREFIX",
                                                "sagemaker"))
    parser.add_argument(
        '--num_workers',
        help="(int) The number of workers started in this pool",
        type=int,
        default=int(rospy.get_param("NUM_WORKERS", 1)))
    parser.add_argument('--rollout_idx',
                        help="(int) The index of current rollout worker",
                        type=int,
                        default=0)
    parser.add_argument('-r',
                        '--redis_ip',
                        help="(string) IP or host for the redis server",
                        default='localhost',
                        type=str)
    parser.add_argument('-rp',
                        '--redis_port',
                        help="(int) Port of the redis server",
                        default=6379,
                        type=int)
    parser.add_argument('--aws_region',
                        help='(string) AWS region',
                        type=str,
                        default=rospy.get_param("AWS_REGION", "us-east-1"))
    parser.add_argument('--reward_file_s3_key',
                        help='(string) Reward File S3 Key',
                        type=str,
                        default=rospy.get_param("REWARD_FILE_S3_KEY", None))
    parser.add_argument('--model_metadata_s3_key',
                        help='(string) Model Metadata File S3 Key',
                        type=str,
                        default=rospy.get_param("MODEL_METADATA_FILE_S3_KEY",
                                                None))
    # For training job, reset is not allowed. penalty_seconds, off_track_penalty, and
    # collision_penalty will all be 0 be default
    parser.add_argument('--number_of_resets',
                        help='(integer) Number of resets',
                        type=int,
                        default=int(rospy.get_param("NUMBER_OF_RESETS", 0)))
    parser.add_argument('--penalty_seconds',
                        help='(float) penalty second',
                        type=float,
                        default=float(rospy.get_param("PENALTY_SECONDS", 0.0)))
    parser.add_argument('--job_type',
                        help='(string) job type',
                        type=str,
                        default=rospy.get_param("JOB_TYPE", "TRAINING"))
    parser.add_argument('--is_continuous',
                        help='(boolean) is continous after lap completion',
                        type=bool,
                        default=utils.str2bool(
                            rospy.get_param("IS_CONTINUOUS", False)))
    parser.add_argument('--race_type',
                        help='(string) Race type',
                        type=str,
                        default=rospy.get_param("RACE_TYPE", "TIME_TRIAL"))
    parser.add_argument('--off_track_penalty',
                        help='(float) off track penalty second',
                        type=float,
                        default=float(rospy.get_param("OFF_TRACK_PENALTY",
                                                      0.0)))
    parser.add_argument('--collision_penalty',
                        help='(float) collision penalty second',
                        type=float,
                        default=float(rospy.get_param("COLLISION_PENALTY",
                                                      0.0)))

    args = parser.parse_args()

    s3_client = SageS3Client(bucket=args.s3_bucket,
                             s3_prefix=args.s3_prefix,
                             aws_region=args.aws_region)
    logger.info("S3 bucket: %s", args.s3_bucket)
    logger.info("S3 prefix: %s", args.s3_prefix)

    # Load the model metadata
    model_metadata_local_path = os.path.join(CUSTOM_FILES_PATH,
                                             'model_metadata.json')
    utils.load_model_metadata(s3_client, args.model_metadata_s3_key,
                              model_metadata_local_path)

    # Download and import reward function
    if not args.reward_file_s3_key:
        log_and_exit(
            "Reward function code S3 key not available for S3 bucket {} and prefix {}"
            .format(args.s3_bucket, args.s3_prefix),
            SIMAPP_SIMULATION_WORKER_EXCEPTION, SIMAPP_EVENT_ERROR_CODE_500)
    download_customer_reward_function(s3_client, args.reward_file_s3_key)

    try:
        from custom_files.customer_reward_function import reward_function
    except Exception as e:
        log_and_exit("Failed to import user's reward_function: {}".format(e),
                     SIMAPP_SIMULATION_WORKER_EXCEPTION,
                     SIMAPP_EVENT_ERROR_CODE_400)

    # Instantiate Cameras
    configure_camera(namespaces=['racecar'])

    preset_file_success, _ = download_custom_files_if_present(
        s3_client, args.s3_prefix)

    #! TODO each agent should have own config
    _, _, version = utils_parse_model_metadata.parse_model_metadata(
        model_metadata_local_path)
    agent_config = {
        'model_metadata': model_metadata_local_path,
        ConfigParams.CAR_CTRL_CONFIG.value: {
            ConfigParams.LINK_NAME_LIST.value:
            LINK_NAMES,
            ConfigParams.VELOCITY_LIST.value:
            VELOCITY_TOPICS,
            ConfigParams.STEERING_LIST.value:
            STEERING_TOPICS,
            ConfigParams.CHANGE_START.value:
            utils.str2bool(rospy.get_param('CHANGE_START_POSITION', True)),
            ConfigParams.ALT_DIR.value:
            utils.str2bool(
                rospy.get_param('ALTERNATE_DRIVING_DIRECTION', False)),
            ConfigParams.ACTION_SPACE_PATH.value:
            'custom_files/model_metadata.json',
            ConfigParams.REWARD.value:
            reward_function,
            ConfigParams.AGENT_NAME.value:
            'racecar',
            ConfigParams.VERSION.value:
            version,
            ConfigParams.NUMBER_OF_RESETS.value:
            args.number_of_resets,
            ConfigParams.PENALTY_SECONDS.value:
            args.penalty_seconds,
            ConfigParams.NUMBER_OF_TRIALS.value:
            None,
            ConfigParams.IS_CONTINUOUS.value:
            args.is_continuous,
            ConfigParams.RACE_TYPE.value:
            args.race_type,
            ConfigParams.COLLISION_PENALTY.value:
            args.collision_penalty,
            ConfigParams.OFF_TRACK_PENALTY.value:
            args.off_track_penalty
        }
    }

    #! TODO each agent should have own s3 bucket
    step_metrics_prefix = rospy.get_param('SAGEMAKER_SHARED_S3_PREFIX')
    if args.num_workers > 1:
        step_metrics_prefix = os.path.join(step_metrics_prefix,
                                           str(args.rollout_idx))
    metrics_s3_config = {
        MetricsS3Keys.METRICS_BUCKET.value:
        rospy.get_param('METRICS_S3_BUCKET'),
        MetricsS3Keys.METRICS_KEY.value:
        rospy.get_param('METRICS_S3_OBJECT_KEY'),
        MetricsS3Keys.REGION.value: rospy.get_param('AWS_REGION')
    }
    metrics_s3_model_cfg = {
        MetricsS3Keys.METRICS_BUCKET.value:
        args.s3_bucket,
        MetricsS3Keys.METRICS_KEY.value:
        os.path.join(args.s3_prefix, DEEPRACER_CHKPNT_KEY_SUFFIX),
        MetricsS3Keys.REGION.value:
        args.aws_region
    }
    run_phase_subject = RunPhaseSubject()

    agent_list = list()
    agent_list.append(
        create_rollout_agent(
            agent_config,
            TrainingMetrics(agent_name='agent',
                            s3_dict_metrics=metrics_s3_config,
                            s3_dict_model=metrics_s3_model_cfg,
                            ckpnt_dir=args.checkpoint_dir,
                            run_phase_sink=run_phase_subject,
                            use_model_picker=(args.rollout_idx == 0)),
            run_phase_subject))
    agent_list.append(create_obstacles_agent())
    agent_list.append(create_bot_cars_agent())
    # ROS service to indicate all the robomaker markov packages are ready for consumption
    signal_robomaker_markov_package_ready()

    PhaseObserver('/agent/training_phase', run_phase_subject)

    aws_region = rospy.get_param('AWS_REGION', args.aws_region)
    simtrace_s3_bucket = rospy.get_param('SIMTRACE_S3_BUCKET', None)
    mp4_s3_bucket = rospy.get_param('MP4_S3_BUCKET',
                                    None) if args.rollout_idx == 0 else None
    if simtrace_s3_bucket:
        simtrace_s3_object_prefix = rospy.get_param('SIMTRACE_S3_PREFIX')
        if args.num_workers > 1:
            simtrace_s3_object_prefix = os.path.join(simtrace_s3_object_prefix,
                                                     str(args.rollout_idx))
    if mp4_s3_bucket:
        mp4_s3_object_prefix = rospy.get_param('MP4_S3_OBJECT_PREFIX')

    s3_writer_job_info = []
    if simtrace_s3_bucket:
        s3_writer_job_info.append(
            IterationData(
                'simtrace', simtrace_s3_bucket, simtrace_s3_object_prefix,
                aws_region,
                os.path.join(
                    ITERATION_DATA_LOCAL_FILE_PATH, 'agent',
                    IterationDataLocalFileNames.SIM_TRACE_TRAINING_LOCAL_FILE.
                    value)))
    if mp4_s3_bucket:
        s3_writer_job_info.extend([
            IterationData(
                'pip', mp4_s3_bucket, mp4_s3_object_prefix, aws_region,
                os.path.join(
                    ITERATION_DATA_LOCAL_FILE_PATH, 'agent',
                    IterationDataLocalFileNames.
                    CAMERA_PIP_MP4_VALIDATION_LOCAL_PATH.value)),
            IterationData(
                '45degree', mp4_s3_bucket, mp4_s3_object_prefix, aws_region,
                os.path.join(
                    ITERATION_DATA_LOCAL_FILE_PATH, 'agent',
                    IterationDataLocalFileNames.
                    CAMERA_45DEGREE_MP4_VALIDATION_LOCAL_PATH.value)),
            IterationData(
                'topview', mp4_s3_bucket, mp4_s3_object_prefix, aws_region,
                os.path.join(
                    ITERATION_DATA_LOCAL_FILE_PATH, 'agent',
                    IterationDataLocalFileNames.
                    CAMERA_TOPVIEW_MP4_VALIDATION_LOCAL_PATH.value))
        ])

    s3_writer = S3Writer(job_info=s3_writer_job_info)

    redis_ip = s3_client.get_ip()
    logger.info("Received IP from SageMaker successfully: %s", redis_ip)

    # Download hyperparameters from SageMaker
    hyperparameters_file_success = False
    hyperparams_s3_key = os.path.normpath(args.s3_prefix +
                                          "/ip/hyperparameters.json")
    hyperparameters_file_success = s3_client.download_file(
        s3_key=hyperparams_s3_key, local_path="hyperparameters.json")
    sm_hyperparams_dict = {}
    if hyperparameters_file_success:
        logger.info("Received Sagemaker hyperparameters successfully!")
        with open("hyperparameters.json") as filepointer:
            sm_hyperparams_dict = json.load(filepointer)
    else:
        logger.info("SageMaker hyperparameters not found.")

    enable_domain_randomization = utils.str2bool(
        rospy.get_param('ENABLE_DOMAIN_RANDOMIZATION', False))
    if preset_file_success:
        preset_location = os.path.join(CUSTOM_FILES_PATH, "preset.py")
        preset_location += ":graph_manager"
        graph_manager = short_dynamic_import(preset_location,
                                             ignore_module_case=True)
        logger.info("Using custom preset file!")
    else:
        graph_manager, _ = get_graph_manager(
            hp_dict=sm_hyperparams_dict,
            agent_list=agent_list,
            run_phase_subject=run_phase_subject,
            enable_domain_randomization=enable_domain_randomization)

    # If num_episodes_between_training is smaller than num_workers then cancel worker early.
    episode_steps_per_rollout = graph_manager.agent_params.algorithm.num_consecutive_playing_steps.num_steps
    # Reduce number of workers if allocated more than num_episodes_between_training
    if args.num_workers > episode_steps_per_rollout:
        logger.info(
            "Excess worker allocated. Reducing from {} to {}...".format(
                args.num_workers, episode_steps_per_rollout))
        args.num_workers = episode_steps_per_rollout
    if args.rollout_idx >= episode_steps_per_rollout or args.rollout_idx >= args.num_workers:
        err_msg_format = "Exiting excess worker..."
        err_msg_format += "(rollout_idx[{}] >= num_workers[{}] or num_episodes_between_training[{}])"
        logger.info(
            err_msg_format.format(args.rollout_idx, args.num_workers,
                                  episode_steps_per_rollout))
        # Close the down the job
        utils.cancel_simulation_job(
            os.environ.get('AWS_ROBOMAKER_SIMULATION_JOB_ARN'),
            rospy.get_param('AWS_REGION'))

    memory_backend_params = DeepRacerRedisPubSubMemoryBackendParameters(
        redis_address=redis_ip,
        redis_port=6379,
        run_type=str(RunType.ROLLOUT_WORKER),
        channel=args.s3_prefix,
        num_workers=args.num_workers,
        rollout_idx=args.rollout_idx)

    graph_manager.memory_backend_params = memory_backend_params

    ds_params_instance = S3BotoDataStoreParameters(
        aws_region=args.aws_region,
        bucket_names={'agent': args.s3_bucket},
        base_checkpoint_dir=args.checkpoint_dir,
        s3_folders={'agent': args.s3_prefix})

    graph_manager.data_store = S3BotoDataStore(ds_params_instance,
                                               graph_manager)

    task_parameters = TaskParameters()
    task_parameters.checkpoint_restore_path = args.checkpoint_dir

    rollout_worker(graph_manager=graph_manager,
                   num_workers=args.num_workers,
                   rollout_idx=args.rollout_idx,
                   task_parameters=task_parameters,
                   s3_writer=s3_writer)
def simtrace_job_info(s3_bucket, s3_prefix, aws_region):
    dir_path = os.path.dirname(os.path.realpath(__file__))
    simtrace_path = "{}/test_data/simtrace.csv".format(dir_path)
    with open(simtrace_path, "w") as filepointer:
        filepointer.write("")
    return [IterationData('simtrace', s3_bucket, s3_prefix, aws_region, simtrace_path)]
Example #5
0
def main():
    """ Main function for evaluation worker """
    parser = argparse.ArgumentParser()
    parser.add_argument('-p',
                        '--preset',
                        help="(string) Name of a preset to run \
                             (class name from the 'presets' directory.)",
                        type=str,
                        required=False)
    parser.add_argument('--s3_bucket',
                        help='list(string) S3 bucket',
                        type=str,
                        nargs='+',
                        default=rospy.get_param("MODEL_S3_BUCKET",
                                                ["gsaur-test"]))
    parser.add_argument('--s3_prefix',
                        help='list(string) S3 prefix',
                        type=str,
                        nargs='+',
                        default=rospy.get_param("MODEL_S3_PREFIX",
                                                ["sagemaker"]))
    parser.add_argument('--s3_endpoint_url',
                        help='(string) S3 endpoint URL',
                        type=str,
                        default=rospy.get_param("S3_ENDPOINT_URL", None))
    parser.add_argument('--aws_region',
                        help='(string) AWS region',
                        type=str,
                        default=rospy.get_param("AWS_REGION", "us-east-1"))
    parser.add_argument('--number_of_trials',
                        help='(integer) Number of trials',
                        type=int,
                        default=int(rospy.get_param("NUMBER_OF_TRIALS", 10)))
    parser.add_argument(
        '-c',
        '--local_model_directory',
        help='(string) Path to a folder containing a checkpoint \
                             to restore the model from.',
        type=str,
        default='./checkpoint')
    parser.add_argument('--number_of_resets',
                        help='(integer) Number of resets',
                        type=int,
                        default=int(rospy.get_param("NUMBER_OF_RESETS", 0)))
    parser.add_argument('--penalty_seconds',
                        help='(float) penalty second',
                        type=float,
                        default=float(rospy.get_param("PENALTY_SECONDS", 2.0)))
    parser.add_argument('--job_type',
                        help='(string) job type',
                        type=str,
                        default=rospy.get_param("JOB_TYPE", "EVALUATION"))
    parser.add_argument('--is_continuous',
                        help='(boolean) is continous after lap completion',
                        type=bool,
                        default=utils.str2bool(
                            rospy.get_param("IS_CONTINUOUS", False)))
    parser.add_argument('--race_type',
                        help='(string) Race type',
                        type=str,
                        default=rospy.get_param("RACE_TYPE", "TIME_TRIAL"))
    parser.add_argument('--off_track_penalty',
                        help='(float) off track penalty second',
                        type=float,
                        default=float(rospy.get_param("OFF_TRACK_PENALTY",
                                                      2.0)))
    parser.add_argument('--collision_penalty',
                        help='(float) collision penalty second',
                        type=float,
                        default=float(rospy.get_param("COLLISION_PENALTY",
                                                      5.0)))
    parser.add_argument('--round_robin_advance_dist',
                        help='(float) round robin distance 0-1',
                        type=float,
                        default=float(
                            rospy.get_param("ROUND_ROBIN_ADVANCE_DIST", 0.05)))
    parser.add_argument('--start_position_offset',
                        help='(float) offset start 0-1',
                        type=float,
                        default=float(
                            rospy.get_param("START_POSITION_OFFSET", 0.0)))

    args = parser.parse_args()
    arg_s3_bucket = args.s3_bucket
    arg_s3_prefix = args.s3_prefix
    logger.info("S3 bucket: %s \n S3 prefix: %s \n S3 endpoint URL: %s",
                args.s3_bucket, args.s3_prefix, args.s3_endpoint_url)

    metrics_s3_buckets = rospy.get_param('METRICS_S3_BUCKET')
    metrics_s3_object_keys = rospy.get_param('METRICS_S3_OBJECT_KEY')

    arg_s3_bucket, arg_s3_prefix = utils.force_list(
        arg_s3_bucket), utils.force_list(arg_s3_prefix)
    metrics_s3_buckets = utils.force_list(metrics_s3_buckets)
    metrics_s3_object_keys = utils.force_list(metrics_s3_object_keys)

    validate_list = [
        arg_s3_bucket, arg_s3_prefix, metrics_s3_buckets,
        metrics_s3_object_keys
    ]

    simtrace_s3_bucket = rospy.get_param('SIMTRACE_S3_BUCKET', None)
    mp4_s3_bucket = rospy.get_param('MP4_S3_BUCKET', None)
    if simtrace_s3_bucket:
        simtrace_s3_object_prefix = rospy.get_param('SIMTRACE_S3_PREFIX')
        simtrace_s3_bucket = utils.force_list(simtrace_s3_bucket)
        simtrace_s3_object_prefix = utils.force_list(simtrace_s3_object_prefix)
        validate_list.extend([simtrace_s3_bucket, simtrace_s3_object_prefix])
    if mp4_s3_bucket:
        mp4_s3_object_prefix = rospy.get_param('MP4_S3_OBJECT_PREFIX')
        mp4_s3_bucket = utils.force_list(mp4_s3_bucket)
        mp4_s3_object_prefix = utils.force_list(mp4_s3_object_prefix)
        validate_list.extend([mp4_s3_bucket, mp4_s3_object_prefix])

    if not all([lambda x: len(x) == len(validate_list[0]), validate_list]):
        log_and_exit(
            "Eval worker error: Incorrect arguments passed: {}".format(
                validate_list), SIMAPP_SIMULATION_WORKER_EXCEPTION,
            SIMAPP_EVENT_ERROR_CODE_500)
    if args.number_of_resets != 0 and args.number_of_resets < MIN_RESET_COUNT:
        raise GenericRolloutException(
            "number of resets is less than {}".format(MIN_RESET_COUNT))

    # Instantiate Cameras
    if len(arg_s3_bucket) == 1:
        configure_camera(namespaces=['racecar'])
    else:
        configure_camera(namespaces=[
            'racecar_{}'.format(str(agent_index))
            for agent_index in range(len(arg_s3_bucket))
        ])

    agent_list = list()
    s3_bucket_dict = dict()
    s3_prefix_dict = dict()
    s3_writers = list()
    start_positions = get_start_positions(len(arg_s3_bucket))
    done_condition = utils.str_to_done_condition(
        rospy.get_param("DONE_CONDITION", any))
    park_positions = utils.pos_2d_str_to_list(
        rospy.get_param("PARK_POSITIONS", []))
    # if not pass in park positions for all done condition case, use default
    if not park_positions:
        park_positions = [DEFAULT_PARK_POSITION for _ in arg_s3_bucket]
    for agent_index, _ in enumerate(arg_s3_bucket):
        agent_name = 'agent' if len(arg_s3_bucket) == 1 else 'agent_{}'.format(
            str(agent_index))
        racecar_name = 'racecar' if len(
            arg_s3_bucket) == 1 else 'racecar_{}'.format(str(agent_index))
        s3_bucket_dict[agent_name] = arg_s3_bucket[agent_index]
        s3_prefix_dict[agent_name] = arg_s3_prefix[agent_index]

        # download model metadata
        model_metadata = ModelMetadata(
            bucket=arg_s3_bucket[agent_index],
            s3_key=get_s3_key(arg_s3_prefix[agent_index],
                              MODEL_METADATA_S3_POSTFIX),
            region_name=args.aws_region,
            s3_endpoint_url=args.s3_endpoint_url,
            local_path=MODEL_METADATA_LOCAL_PATH_FORMAT.format(agent_name))
        _, _, version = model_metadata.get_model_metadata_info()

        # Select the optimal model
        utils.do_model_selection(s3_bucket=arg_s3_bucket[agent_index],
                                 s3_prefix=arg_s3_prefix[agent_index],
                                 region=args.aws_region,
                                 s3_endpoint_url=args.s3_endpoint_url)

        agent_config = {
            'model_metadata': model_metadata,
            ConfigParams.CAR_CTRL_CONFIG.value: {
                ConfigParams.LINK_NAME_LIST.value: [
                    link_name.replace('racecar', racecar_name)
                    for link_name in LINK_NAMES
                ],
                ConfigParams.VELOCITY_LIST.value: [
                    velocity_topic.replace('racecar', racecar_name)
                    for velocity_topic in VELOCITY_TOPICS
                ],
                ConfigParams.STEERING_LIST.value: [
                    steering_topic.replace('racecar', racecar_name)
                    for steering_topic in STEERING_TOPICS
                ],
                ConfigParams.CHANGE_START.value:
                utils.str2bool(rospy.get_param('CHANGE_START_POSITION',
                                               False)),
                ConfigParams.ALT_DIR.value:
                utils.str2bool(
                    rospy.get_param('ALTERNATE_DRIVING_DIRECTION', False)),
                ConfigParams.ACTION_SPACE_PATH.value:
                model_metadata.local_path,
                ConfigParams.REWARD.value:
                reward_function,
                ConfigParams.AGENT_NAME.value:
                racecar_name,
                ConfigParams.VERSION.value:
                version,
                ConfigParams.NUMBER_OF_RESETS.value:
                args.number_of_resets,
                ConfigParams.PENALTY_SECONDS.value:
                args.penalty_seconds,
                ConfigParams.NUMBER_OF_TRIALS.value:
                args.number_of_trials,
                ConfigParams.IS_CONTINUOUS.value:
                args.is_continuous,
                ConfigParams.RACE_TYPE.value:
                args.race_type,
                ConfigParams.COLLISION_PENALTY.value:
                args.collision_penalty,
                ConfigParams.OFF_TRACK_PENALTY.value:
                args.off_track_penalty,
                ConfigParams.START_POSITION.value:
                start_positions[agent_index],
                ConfigParams.DONE_CONDITION.value:
                done_condition,
                ConfigParams.ROUND_ROBIN_ADVANCE_DIST.value:
                args.round_robin_advance_dist,
                ConfigParams.START_POSITION_OFFSET.value:
                args.start_position_offset
            }
        }

        metrics_s3_config = {
            MetricsS3Keys.METRICS_BUCKET.value:
            metrics_s3_buckets[agent_index],
            MetricsS3Keys.METRICS_KEY.value:
            metrics_s3_object_keys[agent_index],
            MetricsS3Keys.ENDPOINT_URL.value:
            rospy.get_param('S3_ENDPOINT_URL', None),
            # Replaced rospy.get_param('AWS_REGION') to be equal to the argument being passed
            # or default argument set
            MetricsS3Keys.REGION.value:
            args.aws_region
        }
        aws_region = rospy.get_param('AWS_REGION', args.aws_region)
        s3_writer_job_info = []
        if simtrace_s3_bucket:
            s3_writer_job_info.append(
                IterationData(
                    'simtrace', simtrace_s3_bucket[agent_index],
                    simtrace_s3_object_prefix[agent_index], aws_region,
                    os.path.join(
                        ITERATION_DATA_LOCAL_FILE_PATH, agent_name,
                        IterationDataLocalFileNames.
                        SIM_TRACE_EVALUATION_LOCAL_FILE.value)))
        if mp4_s3_bucket:
            s3_writer_job_info.extend([
                IterationData(
                    'pip', mp4_s3_bucket[agent_index],
                    mp4_s3_object_prefix[agent_index], aws_region,
                    os.path.join(
                        ITERATION_DATA_LOCAL_FILE_PATH, agent_name,
                        IterationDataLocalFileNames.
                        CAMERA_PIP_MP4_VALIDATION_LOCAL_PATH.value)),
                IterationData(
                    '45degree', mp4_s3_bucket[agent_index],
                    mp4_s3_object_prefix[agent_index], aws_region,
                    os.path.join(
                        ITERATION_DATA_LOCAL_FILE_PATH, agent_name,
                        IterationDataLocalFileNames.
                        CAMERA_45DEGREE_MP4_VALIDATION_LOCAL_PATH.value)),
                IterationData(
                    'topview', mp4_s3_bucket[agent_index],
                    mp4_s3_object_prefix[agent_index], aws_region,
                    os.path.join(
                        ITERATION_DATA_LOCAL_FILE_PATH, agent_name,
                        IterationDataLocalFileNames.
                        CAMERA_TOPVIEW_MP4_VALIDATION_LOCAL_PATH.value))
            ])

        s3_writers.append(
            S3Writer(job_info=s3_writer_job_info,
                     s3_endpoint_url=args.s3_endpoint_url))
        run_phase_subject = RunPhaseSubject()
        agent_list.append(
            create_rollout_agent(
                agent_config,
                EvalMetrics(agent_name, metrics_s3_config, args.is_continuous),
                run_phase_subject))
    agent_list.append(create_obstacles_agent())
    agent_list.append(create_bot_cars_agent())

    # ROS service to indicate all the robomaker markov packages are ready for consumption
    signal_robomaker_markov_package_ready()

    PhaseObserver('/agent/training_phase', run_phase_subject)
    enable_domain_randomization = utils.str2bool(
        rospy.get_param('ENABLE_DOMAIN_RANDOMIZATION', False))

    sm_hyperparams_dict = {}
    graph_manager, _ = get_graph_manager(
        hp_dict=sm_hyperparams_dict,
        agent_list=agent_list,
        run_phase_subject=run_phase_subject,
        enable_domain_randomization=enable_domain_randomization,
        done_condition=done_condition)

    ds_params_instance = S3BotoDataStoreParameters(
        aws_region=args.aws_region,
        bucket_names=s3_bucket_dict,
        base_checkpoint_dir=args.local_model_directory,
        s3_folders=s3_prefix_dict,
        s3_endpoint_url=args.s3_endpoint_url)

    graph_manager.data_store = S3BotoDataStore(params=ds_params_instance,
                                               graph_manager=graph_manager,
                                               ignore_lock=True)
    graph_manager.env_params.seed = 0

    task_parameters = TaskParameters()
    task_parameters.checkpoint_restore_path = args.local_model_directory

    evaluation_worker(graph_manager=graph_manager,
                      number_of_trials=args.number_of_trials,
                      task_parameters=task_parameters,
                      s3_writers=s3_writers,
                      is_continuous=args.is_continuous,
                      park_positions=park_positions)