class MySerializable(Serializable): _id = IdentityField('id') _any_val = AnyField('any_val') _bool_val = BoolField('bool_val') _int8_val = Int8Field('int8_val') _int16_val = Int16Field('int16_val') _int32_val = Int32Field('int32_val') _int64_val = Int64Field('int64_val') _uint8_val = UInt8Field('uint8_val') _uint16_val = UInt16Field('uint16_val') _uint32_val = UInt32Field('uint32_val') _uint64_val = UInt64Field('uint64_val') _float16_val = Float16Field('float16_val') _float32_val = Float32Field('float32_val', on_serialize=lambda x: x + 1, on_deserialize=lambda x: x - 1) _float64_val = Float64Field('float64_val') _complex64_val = Complex64Field('complex64_val') _complex128_val = Complex128Field('complex128_val') _string_val = StringField('string_val') _bytes_val = BytesField('bytes_val') _key_val = KeyField('key_val') _ndarray_val = NDArrayField('ndarray_val') _datetime64_val = Datetime64Field('datetime64_val') _timedelta64_val = Timedelta64Field('timedelta64_val') _datatype_val = DataTypeField('datatype_val') _index_val = IndexField('index_val') _series_val = SeriesField('series_val') _dataframe_val = DataFrameField('dataframe_val') _interval_array_val = IntervalArrayField('interval_array_val') _slice_val = SliceField('slice_val') _function_val = FunctionField('function_val') _named_tuple_val = NamedTupleField('named_tuple_val') _tzinfo_val = TZInfoField('tzinfo_val') _list_val = ListField('list_val', FieldTypes.int64) _tuple_val = TupleField('tuple_val', FieldTypes.string) _dict_val = DictField('dict_val', FieldTypes.string, FieldTypes.bytes) _ref_val = ReferenceField('ref_val', 'self') _ref_val2 = ReferenceField('ref_val2', MySimpleSerializable) _oneof_val = OneOfField('ref_val', oneof1_val=f'{__name__}.MySerializable', oneof2_val=MySimpleSerializable)
class DataFrameWriteTableCommit(DataFrameOperand, DataFrameOperandMixin): _op_type_ = 123462 _dtypes = SeriesField('dtypes') _odps_params = DictField('odps_params') _table_name = StringField('table_name') _overwrite = BoolField('overwrite') _blocks = DictField('blocks') _cupid_handle = StringField('cupid_handle') _is_terminal = BoolField('is_terminal') def __init__(self, dtypes=None, odps_params=None, table_name=None, blocks=None, cupid_handle=None, overwrite=False, is_terminal=None, **kw): kw.update(_output_type_kw) super(DataFrameWriteTableCommit, self).__init__(_dtypes=dtypes, _odps_params=odps_params, _table_name=table_name, _blocks=blocks, _overwrite=overwrite, _cupid_handle=cupid_handle, _is_terminal=is_terminal, **kw) @property def dtypes(self): return self._dtypes @property def table_name(self): return self._table_name @property def blocks(self): return self._blocks @property def overwrite(self): return self._overwrite @property def cupid_handle(self): return self._cupid_handle @property def odps_params(self): return self._odps_params @property def is_terminal(self): return self._is_terminal @classmethod def execute(cls, ctx, op): import pandas as pd from ..cupid_service import CupidServiceClient if op.is_terminal: odps_params = op.odps_params.copy() project = os.environ.get('ODPS_PROJECT_NAME', None) if project: odps_params['project'] = project client = CupidServiceClient() client.commit_table_upload_session(odps_params, op.table_name, op.cupid_handle, op.blocks, op.overwrite) ctx[op.outputs[0].key] = pd.DataFrame()
class DataFrameWriteTable(DataFrameOperand, DataFrameOperandMixin): _op_type_ = 123460 _dtypes = SeriesField('dtypes') _odps_params = DictField('odps_params') _table_name = StringField('table_name') _partition_spec = StringField('partition_spec') _overwrite = BoolField('overwrite') _write_batch_size = Int64Field('write_batch_size') _unknown_as_string = BoolField('unknown_as_string') def __init__(self, dtypes=None, odps_params=None, table_name=None, partition_spec=None, unknown_as_string=None, over_write=None, write_batch_size=None, **kw): kw.update(_output_type_kw) super(DataFrameWriteTable, self).__init__(_dtypes=dtypes, _odps_params=odps_params, _table_name=table_name, _partition_spec=partition_spec, _unknown_as_string=unknown_as_string, _overwrite=over_write, _write_batch_size=write_batch_size, **kw) @property def retryable(self): return False @property def dtypes(self): return self._dtypes @property def unknown_as_string(self): return self._unknown_as_string @property def odps_params(self): return self._odps_params @property def table_name(self): return self._table_name @property def partition_spec(self): return self._partition_spec @property def overwrite(self): return self._overwrite @property def write_batch_size(self): return self._write_batch_size def __call__(self, x): shape = (0, ) * len(x.shape) index_value = parse_index(x.index_value.to_pandas()[:0], x.key, 'index') columns_value = parse_index(x.columns_value.to_pandas()[:0], x.key, 'columns', store_data=True) return self.new_dataframe([x], shape=shape, dtypes=x.dtypes[:0], index_value=index_value, columns_value=columns_value) @classmethod def _tile_cupid(cls, op): from mars.dataframe.utils import build_concatenated_rows_frame cupid_client = CupidServiceClient() upload_handle = cupid_client.create_table_upload_session( op.odps_params, op.table_name) input_df = build_concatenated_rows_frame(op.inputs[0]) out_df = op.outputs[0] out_chunks = [] out_chunk_shape = (0, ) * len(input_df.shape) blocks = {} for chunk in input_df.chunks: block_id = str(int(time.time())) + '_' + str(uuid.uuid4()).replace( '-', '') chunk_op = DataFrameWriteTableSplit( dtypes=op.dtypes, table_name=op.table_name, odps_params=op.odps_params, unknown_as_string=op.unknown_as_string, partition_spec=op.partition_spec, cupid_handle=to_str(upload_handle), block_id=block_id, write_batch_size=op.write_batch_size) out_chunk = chunk_op.new_chunk([chunk], shape=out_chunk_shape, index=chunk.index, index_value=out_df.index_value, dtypes=chunk.dtypes) out_chunks.append(out_chunk) blocks[block_id] = op.partition_spec # build commit tree combine_size = 8 chunks = out_chunks while len(chunks) >= combine_size: new_chunks = [] for i in range(0, len(chunks), combine_size): chks = chunks[i:i + combine_size] if len(chks) == 1: chk = chks[0] else: chk_op = DataFrameWriteTableCommit(dtypes=op.dtypes, is_terminal=False) chk = chk_op.new_chunk(chks, shape=out_chunk_shape, index_value=out_df.index_value, dtypes=op.dtypes) new_chunks.append(chk) chunks = new_chunks assert len(chunks) < combine_size commit_table_op = DataFrameWriteTableCommit( dtypes=op.dtypes, table_name=op.table_name, blocks=blocks, cupid_handle=to_str(upload_handle), overwrite=op.overwrite, odps_params=op.odps_params, is_terminal=True) commit_table_chunk = commit_table_op.new_chunk( chunks, shape=out_chunk_shape, dtypes=op.dtypes, index_value=out_df.index_value, index=(0, ) * len(out_chunk_shape)) new_op = op.copy() return new_op.new_dataframes(op.inputs, shape=out_df.shape, index_value=out_df.index_value, dtypes=out_df.dtypes, columns_value=out_df.columns_value, chunks=[commit_table_chunk], nsplits=((0, ), ) * len(out_chunk_shape)) @classmethod def _tile_tunnel(cls, op): out_df = op.outputs[0] in_df = build_concatenated_rows_frame(op.inputs[0]) out_chunks = [] for chunk in in_df.chunks: chunk_op = DataFrameWriteTableSplit( dtypes=op.dtypes, table_name=op.table_name, odps_params=op.odps_params, partition_spec=op.partition_spec) index_value = parse_index(chunk.index_value.to_pandas()[:0], chunk) out_chunk = chunk_op.new_chunk([chunk], shape=(0, 0), index_value=index_value, columns_value=out_df.columns_value, dtypes=out_df.dtypes, index=chunk.index) out_chunks.append(out_chunk) new_op = op.copy() params = out_df.params.copy() params.update( dict(chunks=out_chunks, nsplits=((0, ) * in_df.chunk_shape[0], (0, )))) return new_op.new_tileables([in_df], **params) @classmethod def tile(cls, op): if 'CUPID_SERVICE_SOCKET' in os.environ: return cls._tile_cupid(op) else: return cls._tile_tunnel(op)
class DataFrameWriteTableSplit(DataFrameOperand, DataFrameOperandMixin): _op_type_ = 123461 _dtypes = SeriesField('dtypes') _table_name = StringField('table_name') _partition_spec = StringField('partition_spec') _cupid_handle = StringField('cupid_handle') _block_id = StringField('block_id') _write_batch_size = Int64Field('write_batch_size') _unknown_as_string = BoolField('unknown_as_string') # for tunnel _odps_params = DictField('odps_params') def __init__(self, dtypes=None, table_name=None, odps_params=None, partition_spec=None, cupid_handle=None, unknown_as_string=None, block_id=None, write_batch_size=None, **kw): kw.update(_output_type_kw) super(DataFrameWriteTableSplit, self).__init__(_dtypes=dtypes, _table_name=table_name, _odps_params=odps_params, _partition_spec=partition_spec, _unknown_as_string=unknown_as_string, _cupid_handle=cupid_handle, _block_id=block_id, _write_batch_size=write_batch_size, **kw) @property def retryable(self): return False @property def dtypes(self): return self._dtypes @property def table_name(self): return self._table_name @property def odps_params(self): return self._odps_params @property def unknown_as_string(self): return self._unknown_as_string @property def partition_spec(self): return self._partition_spec @property def cupid_handle(self): return self._cupid_handle @property def block_id(self): return self._block_id @property def write_batch_size(self): return self._write_batch_size @classmethod def _execute_in_cupid(cls, ctx, op): import os import pandas as pd from odps import ODPS from odps.accounts import BearerTokenAccount cupid_client = CupidServiceClient() to_store_data = ctx[op.inputs[0].key] bearer_token = cupid_client.get_bearer_token() account = BearerTokenAccount(bearer_token) project = os.environ.get('ODPS_PROJECT_NAME', None) odps_params = op.odps_params.copy() if project: odps_params['project'] = project endpoint = os.environ.get( 'ODPS_RUNTIME_ENDPOINT') or odps_params['endpoint'] o = ODPS(None, None, account=account, project=odps_params['project'], endpoint=endpoint) odps_schema = o.get_table(op.table_name).schema project_name, table_name = op.table_name.split('.') writer_config = dict(_table_name=table_name, _project_name=project_name, _table_schema=odps_schema, _partition_spec=op.partition_spec, _block_id=op.block_id, _handle=op.cupid_handle) cupid_client.write_table_data(writer_config, to_store_data, op.write_batch_size) ctx[op.outputs[0].key] = pd.DataFrame() @classmethod def _execute_arrow_tunnel(cls, ctx, op): from odps import ODPS from odps.tunnel import TableTunnel import pyarrow as pa import pandas as pd project = os.environ.get('ODPS_PROJECT_NAME', None) odps_params = op.odps_params.copy() if project: odps_params['project'] = project endpoint = os.environ.get( 'ODPS_RUNTIME_ENDPOINT') or odps_params['endpoint'] o = ODPS(odps_params['access_id'], odps_params['secret_access_key'], project=odps_params['project'], endpoint=endpoint) t = o.get_table(op.table_name) tunnel = TableTunnel(o, project=t.project) retry_times = options.retry_times retries = 0 while True: try: if op.partition_spec is not None: upload_session = tunnel.create_upload_session( t.name, partition_spec=op.partition_spec) else: upload_session = tunnel.create_upload_session(t.name) break except: if retries >= retry_times: raise time.sleep(1) logger.debug('Start writing table %s split index: %s', op.table_name, op.inputs[0].index) retries = 0 while True: try: writer = upload_session.open_arrow_writer(0) arrow_rb = pa.RecordBatch.from_pandas(ctx[op.inputs[0].key]) writer.write(arrow_rb) writer.close() break except: if retries >= retry_times: raise time.sleep(1) upload_session.commit([0]) logger.debug('Finish writing table %s split index: %s', op.table_name, op.inputs[0].index) ctx[op.outputs[0].key] = pd.DataFrame() @classmethod def execute(cls, ctx, op): if op.cupid_handle is not None: cls._execute_in_cupid(ctx, op) else: cls._execute_arrow_tunnel(ctx, op)
class DataFrameReadTable(*_BASE): _op_type_ = 123450 _odps_params = DictField('odps_params') _table_name = StringField('table_name') _partition_spec = StringField('partition_spec') _dtypes = SeriesField('dtypes') _incremental_index = BoolField('incremental_index') _columns = AnyField('columns') _nrows = Int64Field('nrows') _use_arrow_dtype = BoolField('use_arrow_dtype') _string_as_binary = BoolField('string_as_binary') _append_partitions = BoolField('append_partitions') _last_modified_time = Int64Field('last_modified_time') _with_split_meta_on_tile = BoolField('with_split_meta_on_tile') _retry_times = Int64Field('retry_times') def __init__(self, odps_params=None, table_name=None, partition_spec=None, columns=None, dtypes=None, nrows=None, sparse=None, incremental_index=True, use_arrow_dtype=None, string_as_binary=None, memory_scale=None, append_partitions=None, last_modified_time=None, with_split_meta_on_tile=False, retry_times=None, **kw): super(DataFrameReadTable, self).__init__(_odps_params=odps_params, _table_name=table_name, _partition_spec=partition_spec, _columns=columns, _dtypes=dtypes, _nrows=nrows, _sparse=sparse, _use_arrow_dtype=use_arrow_dtype, _string_as_binary=string_as_binary, _incremental_index=incremental_index, _append_partitions=append_partitions, _last_modified_time=last_modified_time, _memory_scale=memory_scale, _with_split_meta_on_tile=with_split_meta_on_tile, _retry_times=retry_times, _output_types=[OutputType.dataframe], **kw) @property def retryable(self): return False @property def odps_params(self): return self._odps_params @property def table_name(self): return self._table_name @property def partition(self): return getattr(self, '_partition_spec', None) @property def columns(self): return self._columns @property def dtypes(self): return self._dtypes @property def nrows(self): return self._nrows @property def use_arrow_dtype(self): return self._use_arrow_dtype @property def string_as_binary(self): return self._string_as_binary @property def incremental_index(self): return self._incremental_index @property def append_partitions(self): return self._append_partitions @property def with_split_meta_on_tile(self): return self._with_split_meta_on_tile @property def retry_times(self): return self._retry_times def get_columns(self): return self._columns def set_pruned_columns(self, columns, *, keep_order=None): # pragma: no cover self._columns = columns def __call__(self, shape, chunk_bytes=None, chunk_size=None): import numpy as np import pandas as pd if np.isnan(shape[0]): index_value = parse_index(pd.RangeIndex(0)) else: index_value = parse_index(pd.RangeIndex(shape[0])) columns_value = parse_index(self.dtypes.index, store_data=True) return self.new_dataframe(None, shape, dtypes=self.dtypes, index_value=index_value, columns_value=columns_value, chunk_bytes=chunk_bytes, chunk_size=chunk_size) @classmethod def _tile_cupid(cls, op): import numpy as np import pandas as pd from mars.core.context import get_context df = op.outputs[0] split_size = df.extra_params.chunk_bytes or CHUNK_BYTES_LIMIT out_dtypes = df.dtypes out_shape = df.shape out_columns_value = df.columns_value if op.columns is not None: out_dtypes = out_dtypes[op.columns] out_shape = (df.shape[0], len(op.columns)) out_columns_value = parse_index(out_dtypes.index, store_data=True) mars_context = get_context() if mars_context is not None: worker_count = len(mars_context.get_worker_addresses()) else: worker_count = None cupid_client = CupidServiceClient() try: parts = cupid_client.enum_table_partitions(op.odps_params, op.table_name, op.partition) if parts is None: parts = [None] out_chunks = [] chunk_idx = 0 for partition_spec in parts: splits, split_size = cupid_client.create_table_download_session( op.odps_params, op.table_name, partition_spec, op.columns, worker_count, split_size, MAX_CHUNK_NUM, op.with_split_meta_on_tile) logger.debug('%s table splits have been created.', str(len(splits))) meta_chunk_rows = [split.meta_row_count for split in splits] if np.isnan(out_shape[0]): est_chunk_rows = meta_chunk_rows else: sp_file_sizes = np.array([ sp.split_file_end - sp.split_file_start for sp in splits ]) total_size = sp_file_sizes.sum() ratio_chunk_rows = (sp_file_sizes * out_shape[0] // total_size).tolist() est_chunk_rows = [ mr if mr is not None else rr for mr, rr in zip(meta_chunk_rows, ratio_chunk_rows) ] logger.warning('Estimated chunk rows: %r', est_chunk_rows) if len(splits) == 0: logger.debug('Table %s has no data', op.table_name) chunk_op = DataFrameReadTableSplit() index_value = parse_index(pd.RangeIndex(0)) columns_value = parse_index(out_dtypes.index, store_data=True) out_chunk = chunk_op.new_chunk(None, shape=(np.nan, out_shape[1]), dtypes=op.dtypes, index_value=index_value, columns_value=columns_value, index=(chunk_idx, 0)) out_chunks.append(out_chunk) chunk_idx += 1 else: for idx, split in enumerate(splits): chunk_op = DataFrameReadTableSplit( cupid_handle=to_str(split.handle), split_index=split.split_index, split_file_start=split.split_file_start, split_file_end=split.split_file_end, schema_file_start=split.schema_file_start, schema_file_end=split.schema_file_end, incremental_index=op.incremental_index, dtypes=out_dtypes, sparse=op.sparse, split_size=split_size, string_as_binary=op.string_as_binary, use_arrow_dtype=op.use_arrow_dtype, estimate_rows=est_chunk_rows[idx], partition_spec=partition_spec, append_partitions=op.append_partitions, meta_raw_size=split.meta_raw_size, nrows=meta_chunk_rows[idx] or op.nrows, memory_scale=op.memory_scale, extra_params=op.extra_params) # the chunk shape is unknown index_value = parse_index(pd.RangeIndex(0)) columns_value = parse_index(out_dtypes.index, store_data=True) out_chunk = chunk_op.new_chunk( None, shape=(np.nan, out_shape[1]), dtypes=out_dtypes, index_value=index_value, columns_value=columns_value, index=(chunk_idx, 0)) chunk_idx += 1 out_chunks.append(out_chunk) finally: cupid_client.close() if op.incremental_index and _NEED_STANDARDIZE: out_chunks = standardize_range_index(out_chunks) new_op = op.copy() nsplits = ((np.nan, ) * len(out_chunks), (out_shape[1], )) return new_op.new_dataframes(None, shape=out_shape, dtypes=op.dtypes, index_value=df.index_value, columns_value=out_columns_value, chunks=out_chunks, nsplits=nsplits) @classmethod def _tile_tunnel(cls, op): from odps import ODPS project = os.environ.get('ODPS_PROJECT_NAME', None) odps_params = op.odps_params.copy() if project: odps_params['project'] = project endpoint = os.environ.get( 'ODPS_RUNTIME_ENDPOINT') or odps_params['endpoint'] o = ODPS(odps_params['access_id'], odps_params['secret_access_key'], project=odps_params['project'], endpoint=endpoint) table_obj = o.get_table(op.table_name) if not table_obj.schema.partitions: data_srcs = [table_obj] elif op.partition is not None and check_partition_exist( table_obj, op.partition): data_srcs = [table_obj.get_partition(op.partition)] else: data_srcs = list(table_obj.partitions) if op.partition is not None: data_srcs = filter_partitions(o, data_srcs, op.partition) out_chunks = [] row_nsplits = [] index_start = 0 df = op.outputs[0] out_dtypes = df.dtypes out_shape = df.shape out_columns_value = df.columns_value if op.columns is not None: out_dtypes = out_dtypes[op.columns] out_shape = (df.shape[0], len(op.columns)) out_columns_value = parse_index(out_dtypes.index, store_data=True) if len(data_srcs) == 0: # no partitions are selected chunk_op = DataFrameReadTableSplit() index_value = parse_index(pd.RangeIndex(0)) columns_value = parse_index(out_dtypes.index, store_data=True) out_chunk = chunk_op.new_chunk(None, shape=(0, out_shape[1]), dtypes=op.dtypes, index_value=index_value, columns_value=columns_value, index=(index_start, 0)) out_chunks.append(out_chunk) else: retry_times = op.retry_times or options.retry_times for data_src in data_srcs: data_store_size = data_src.size retries = 0 while True: try: with data_src.open_reader() as reader: record_count = reader.count break except: if retries >= retry_times: raise retries += 1 time.sleep(1) if data_store_size == 0: # empty table chunk_op = DataFrameReadTableSplit() index_value = parse_index(pd.RangeIndex(0)) columns_value = parse_index(out_dtypes.index, store_data=True) out_chunk = chunk_op.new_chunk(None, shape=(0, out_shape[1]), dtypes=op.dtypes, index_value=index_value, columns_value=columns_value, index=(index_start, 0)) out_chunks.append(out_chunk) index_start += 1 continue chunk_size = df.extra_params.chunk_size partition_spec = str(data_src.partition_spec) \ if getattr(data_src, 'partition_spec', None) else None if chunk_size is None: chunk_bytes = df.extra_params.chunk_bytes or CHUNK_BYTES_LIMIT chunk_count = data_store_size // chunk_bytes + ( data_store_size % chunk_bytes != 0) chunk_size = ceildiv(record_count, chunk_count) split_size = chunk_bytes else: chunk_count = ceildiv(record_count, chunk_size) split_size = data_store_size // chunk_count for i in range(chunk_count): start_index = chunk_size * i end_index = min(chunk_size * (i + 1), record_count) row_size = end_index - start_index chunk_op = DataFrameReadTableSplit( table_name=op.table_name, partition_spec=partition_spec, start_index=start_index, end_index=end_index, nrows=op.nrows, odps_params=op.odps_params, columns=op.columns, incremental_index=op.incremental_index, dtypes=out_dtypes, sparse=op.sparse, split_size=split_size, use_arrow_dtype=op.use_arrow_dtype, estimate_rows=row_size, append_partitions=op.append_partitions, memory_scale=op.memory_scale, retry_times=op.retry_times, extra_params=op.extra_params) index_value = parse_index( pd.RangeIndex(start_index, end_index)) columns_value = parse_index(out_dtypes.index, store_data=True) out_chunk = chunk_op.new_chunk(None, shape=(row_size, out_shape[1]), dtypes=out_dtypes, index_value=index_value, columns_value=columns_value, index=(index_start + i, 0)) row_nsplits.append(row_size) out_chunks.append(out_chunk) index_start += chunk_count if op.incremental_index and _NEED_STANDARDIZE: out_chunks = standardize_range_index(out_chunks) new_op = op.copy() nsplits = (tuple(row_nsplits), (out_shape[1], )) return new_op.new_dataframes(None, shape=out_shape, dtypes=op.dtypes, index_value=df.index_value, columns_value=out_columns_value, chunks=out_chunks, nsplits=nsplits) @classmethod def _tile(cls, op): if 'CUPID_SERVICE_SOCKET' in os.environ: return cls._tile_cupid(op) else: return cls._tile_tunnel(op)
class DataFrameReadTableSplit(*_BASE): _op_type_ = 123451 # for cupid _cupid_handle = StringField('cupid_handle') _split_index = Int64Field('split_index') _split_file_start = Int64Field('split_file_start') _split_file_end = Int64Field('split_file_end') _schema_file_start = Int64Field('schema_file_start') _schema_file_end = Int64Field('schema_file_end') _use_arrow_dtype = BoolField('use_arrow_dtype') _string_as_binary = BoolField('string_as_binary') _dtypes = SeriesField('dtypes') _nrows = Int64Field('nrows') _incremental_index = BoolField('incremental_index') # for tunnel _table_name = StringField('table_name') _partition_spec = StringField('partition_spec') _start_index = Int64Field('start_index') _end_index = Int64Field('end_index') _odps_params = DictField('odps_params') _columns = AnyField('columns') _split_size = Int64Field('split_size') _append_partitions = BoolField('append_partitions') _estimate_rows = Int64Field('estimate_rows') _meta_raw_size = Int64Field('meta_raw_size') _retry_times = Int64Field('retry_times') def __init__(self, cupid_handle=None, split_index=None, split_file_start=None, split_file_end=None, schema_file_start=None, schema_file_end=None, table_name=None, partition_spec=None, start_index=None, end_index=None, odps_params=None, columns=None, nrows=None, incremental_index=None, dtypes=None, string_as_binary=None, split_size=None, use_arrow_dtype=None, memory_scale=None, estimate_rows=None, meta_raw_size=None, retry_times=None, append_partitions=None, sparse=None, **kw): super(DataFrameReadTableSplit, self).__init__(_cupid_handle=cupid_handle, _split_index=split_index, _split_file_start=split_file_start, _split_file_end=split_file_end, _schema_file_start=schema_file_start, _schema_file_end=schema_file_end, _table_name=table_name, _partition_spec=partition_spec, _columns=columns, _start_index=start_index, _end_index=end_index, _odps_params=odps_params, _use_arrow_dtype=use_arrow_dtype, _string_as_binary=string_as_binary, _nrows=nrows, _incremental_index=incremental_index, _estimate_rows=estimate_rows, _split_size=split_size, _dtypes=dtypes, _append_partitions=append_partitions, _sparse=sparse, _meta_raw_size=meta_raw_size, _memory_scale=memory_scale, _retry_times=retry_times, _output_types=[OutputType.dataframe], **kw) @property def retryable(self): return False @property def output_limit(self): return 1 @property def cupid_handle(self): return self._cupid_handle @property def split_index(self): return self._split_index @property def split_file_start(self): return self._split_file_start @property def split_file_end(self): return self._split_file_end @property def schema_file_start(self): return self._schema_file_start @property def schema_file_end(self): return self._schema_file_end @property def table_name(self): return self._table_name @property def partition_spec(self): return self._partition_spec @property def start_index(self): return self._start_index @property def end_index(self): return self._end_index @property def odps_params(self): return self._odps_params @property def columns(self): return self._columns @property def nrows(self): return self._nrows @property def incremental_index(self): return self._incremental_index @property def dtypes(self): return self._dtypes @property def split_size(self): return self._split_size @property def estimate_rows(self): return self._estimate_rows @property def use_arrow_dtype(self): return self._use_arrow_dtype @property def string_as_binary(self): return self._string_as_binary @property def append_partitions(self): return self._append_partitions @property def meta_raw_size(self): return self._meta_raw_size @property def retry_times(self): return self._retry_times def set_pruned_columns(self, columns, *, keep_order=None): # pragma: no cover if isinstance(columns, str): columns = [columns] self._columns = list(columns) def get_columns(self): return self._columns @classmethod def estimate_size(cls, ctx, op): import numpy as np def is_object_dtype(dtype): try: return np.issubdtype(dtype, np.object_) \ or np.issubdtype(dtype, np.unicode_) \ or np.issubdtype(dtype, np.bytes_) except TypeError: # pragma: no cover return False if op.split_size is None: ctx[op.outputs[0].key] = (0, 0) return arrow_size = (op.memory_scale or ORC_COMPRESSION_RATIO) * op.split_size if op.meta_raw_size is not None: raw_arrow_size = (op.memory_scale or 1) * op.meta_raw_size arrow_size = max(arrow_size, raw_arrow_size) n_strings = len([dt for dt in op.dtypes if is_object_dtype(dt)]) if op.estimate_rows or op.nrows: rows = op.nrows if op.nrows is not None else op.estimate_rows pd_size = arrow_size + n_strings * rows * STRING_FIELD_OVERHEAD logger.debug('Estimate pandas memory cost: %r', pd_size) else: pd_size = arrow_size * 10 if n_strings else arrow_size ctx[op.outputs[0].key] = (pd_size, pd_size + arrow_size) @classmethod def _cast_string_to_binary(cls, arrow_table): import pyarrow as pa new_schema = [] for field in arrow_table.schema: if field.type == pa.string(): new_schema.append(pa.field(field.name, pa.binary())) else: new_schema.append(field) return arrow_table.cast(pa.schema(new_schema)) @classmethod def _append_partition_values(cls, arrow_table, op): import pyarrow as pa if op.append_partitions and op.partition_spec: from odps.types import PartitionSpec spec = PartitionSpec(op.partition_spec) for col_name, pt_val in spec.items(): arrow_table = arrow_table.append_column( col_name, pa.array([pt_val] * arrow_table.num_rows, pa.string())) return arrow_table @staticmethod def _align_columns(data, expected_dtypes): data_columns = data.dtypes.index expected_columns = expected_dtypes.index if not data_columns.equals(expected_columns): logger.debug( "Data columns differs from output columns, " "data columns: %s, output columns: %s", data_columns, expected_columns) data.columns = expected_columns[:len(data.columns)] for extra_col in expected_columns[len(data.columns):]: data[extra_col] = pd.Series([], dtype=expected_dtypes[extra_col]) if not data.dtypes.index.equals(expected_columns): data = data[expected_columns] return data @classmethod def _align_output_data(cls, op, data): if isinstance(op.outputs[0], DATAFRAME_CHUNK_TYPE): dtypes = op.outputs[0].dtypes data = cls._align_columns(data, dtypes) else: dtypes = pd.Series([op.outputs[0].dtype], index=[op.outputs[0].name]) data = cls._align_columns(data, dtypes) data = data[op.outputs[0].name] return data @classmethod def _build_empty_df(cls, out): empty_df = pd.DataFrame() for name, dtype in out.dtypes.items(): empty_df[name] = pd.Series(dtype=dtype) return empty_df @classmethod def _execute_in_cupid(cls, ctx, op): out = op.outputs[0] if op.cupid_handle is None: ctx[out.key] = cls._build_empty_df(out) return split_config = dict( _handle=op.cupid_handle, _split_index=op.split_index, _split_file_start=op.split_file_start, _split_file_end=op.split_file_end, _schema_file_start=op.schema_file_start, _schema_file_end=op.schema_file_end, ) cupid_client = CupidServiceClient() try: pa_table = cupid_client.read_table_data(split_config, op.nrows) finally: cupid_client.close() cupid_client = None pa_table = cls._append_partition_values(pa_table, op) if op.string_as_binary: pa_table = cls._cast_string_to_binary(pa_table) data = arrow_table_to_pandas_dataframe( pa_table, use_arrow_dtype=op.use_arrow_dtype)[:op.nrows] data = cls._align_output_data(op, data) logger.debug('Read split table finished, split index: %s', op.split_index) logger.debug('Split data shape is %s', data.shape) ctx[out.key] = data @classmethod def _execute_arrow_tunnel(cls, ctx, op): from odps import ODPS from odps.tunnel import TableTunnel out = op.outputs[0] if op.table_name is None: # is empty table ctx[out.key] = cls._build_empty_df(out) return project = os.environ.get('ODPS_PROJECT_NAME', None) odps_params = op.odps_params.copy() if project: odps_params['project'] = project endpoint = os.environ.get( 'ODPS_RUNTIME_ENDPOINT') or odps_params['endpoint'] o = ODPS(odps_params['access_id'], odps_params['secret_access_key'], project=odps_params['project'], endpoint=endpoint) t = o.get_table(op.table_name) tunnel = TableTunnel(o, project=t.project) retry_times = op.retry_times or options.retry_times retries = 0 while True: try: if op.partition_spec is not None: download_session = tunnel.create_download_session( t.name, partition_spec=op.partition_spec) else: download_session = tunnel.create_download_session(t.name) break except: if retries >= retry_times: raise retries += 1 time.sleep(1) logger.debug('Start reading table %s(%s) split from %s to %s', op.table_name, op.partition_spec, op.start_index, op.end_index) if op.nrows is None: count = op.end_index - op.start_index else: count = op.nrows retries = 0 while True: try: with download_session.open_arrow_reader( op.start_index, count, columns=op.columns) as reader: table = reader.read() break except: if retries >= retry_times: raise retries += 1 time.sleep(1) table = cls._append_partition_values(table, op) if op.string_as_binary: table = cls._cast_string_to_binary(table) data = arrow_table_to_pandas_dataframe( table, use_arrow_dtype=op.use_arrow_dtype) data = cls._align_output_data(op, data) logger.debug('Finish reading table %s(%s) split from %s to %s', op.table_name, op.partition_spec, op.start_index, op.end_index) ctx[op.outputs[0].key] = data @classmethod def execute(cls, ctx, op): if 'CUPID_SERVICE_SOCKET' in os.environ: cls._execute_in_cupid(ctx, op) else: cls._execute_arrow_tunnel(ctx, op)