] # files = [] # Load Data # file_x = path + files[0] # data_x = np.genfromtxt(file_x, delimiter=';')[:, 1:5] # data_x, _ = create_timeseries_matrix(data_x, look_back=20) # data_x = np.reshape(data_x, (len(data_x), 20, 4)) data_x = np.ones((80, ), dtype=np.float) data_x = np.reshape(data_x, (1, 20, 4)) start_t = time.clock() for fn in files: new_data = np.genfromtxt(path + fn, delimiter=';')[:, 1:5] new_data, _ = create_timeseries_matrix(new_data, look_back=20) new_data = np.reshape(new_data, (len(new_data), 20, 4)) data_x = np.vstack((data_x, new_data)) print('New data shape: {} \nRead+Calc time: {}'.format(data_x.shape, time.clock() - start_t)) x_train, x_test = train_test_split(data_x, test_size=0.1) data_x = None # Clear memory # Train AE encoder, decoder, autoencoder = vae.create_deep_ae((20, 4), 64) autoencoder.compile(optimizer='nadam', loss='mse') autoencoder.load_weights(wpath + 'ae_deep_20-4_64.hdf5', by_name=True)
# xdelta, # xdiff1, xdiff2, # xlogdiff1, xlogdiff2, ))) print('Loading Data...') train_data = np.genfromtxt(file_x, delimiter=';') target_data = np.genfromtxt(file_y, delimiter=';') train_data, target_data = train_data[-limit:, ], target_data[-limit:] data_x = prepare_data(train_data) data_y = signal_to_class(target_data, n=nclasses, normalize=normalize_class) data_x, data_y = create_timeseries_matrix(data_x, data_y, ts_lookback) # batch_input_shape=(batch_size, timesteps, units) # data_x = np.reshape(data_x, (data_x.shape[0], ts_lookback, train_data.shape[1])) # For training validation train_x, test_x, train_y, test_y = train_test_split(data_x, data_y, test_size=train_test) print('Input data shape :', data_x.shape) print('Train/Test :', len(train_y), '/', len(test_y)) #=============================================================================# # P R E P A R E M O D E L # #=============================================================================#
import numpy as np from mas_tools.data import create_timeseries_matrix from files import FILES, PERIODS, CSV print('Warning! Process may be very long.') # lpath = 'E:/Projects/market-analysis-system/data/transformed/' lpath = 'E:/Projects/market-analysis-system/data/normalized/' spath = 'E:/Projects/market-analysis-system/data/windowed/' window = 20 # warning! size of file multiply in to window size for symbol in FILES: for tf in PERIODS: ## Optimize skip if tf == '1' or tf == '5' or tf =='15': continue ## Read data = np.genfromtxt(lpath+symbol+tf+CSV, delimiter=';') ## To windowed data, _ = create_timeseries_matrix(data, look_back=window) ## Save np.savetxt(spath+'norm_w_'+str(window)+symbol+tf+CSV, data, fmt='%0.6f', delimiter=';') data = None