Example #1
0
 def net_topology(self, topology):
     
     self.mask = ma.Mask(self, topology).weights;
     
     # this boolean specifies if the net has a fully connected topology 
     #   (in this sense if it's not so the backprop and forward change a lot)
     self.fully_connected = False; 
Example #2
0
class Pyro(Character):
    #FIXME: width, height of pyro - rectangle collision
    collision_mask = mask.Mask(12, 33, True)
    max_speed = 198
    maxhp = 120

    def __init__(self, game, state, player_id):
        Character.__init__(self, game, state, player_id)

        self.hp = self.maxhp
        self.weapon_id = weapon.Flamethrower(game, state, self.id).id
Example #3
0
class Engineer(Character):
    # FIXME: width, height of engineer - rectangle collision
    collision_mask = mask.Mask(12, 33, True)
    max_speed = 180
    maxhp = 120

    def __init__(self, game, state, player_id):
        Character.__init__(self, game, state, player_id)

        self.hp = self.maxhp
        self.weapon_id = weapon.Shotgun(game, state, self.id).id
Example #4
0
class Soldier(Character):
    # FIXME: width, height of soldier - rectangle collision
    collision_mask = mask.Mask(12, 33, True)
    max_speed = 162
    maxhp = 150

    def __init__(self, game, state, player_id):
        Character.__init__(self, game, state, player_id)

        self.hp = self.maxhp
        self.weapon_id = weapon.Rocketlauncher(game, state, self.id).id
Example #5
0
class Sniper(Character):
    # FIXME: width, height of heavy - rectangle collision
    # TODO: this class
    collision_mask = mask.Mask(12, 33, True)
    max_speed = 144
    maxhp = 200

    def __init__(self, game, state, player_id):
        Character.__init__(self, game, state, player_id)

        self.hp = self.maxhp
        self.weapon_id = weapon.Minigun(game, state, self.id).id
Example #6
0
class Spy(Character):
    # FIXME: width, height of spy - rectangle collision
    collision_mask = mask.Mask(12, 33, True)
    max_speed = 194.4
    maxhp = 100

    def __init__(self, game, state, player_id):
        Character.__init__(self, game, state, player_id)

        self.hp = self.maxhp
        self.weapon_id = weapon.Revolver(game, state, self.id).id
        self.cloaking = False
Example #7
0
class Medic(Character):
    # FIXME: width, height of Medic - rectangle collision
    # FIXME: offsets to be proper
    collision_mask = mask.Mask(12, 33, True)
    max_speed = 175
    maxhp = 120

    def __init__(self, game, state, player_id):
        Character.__init__(self, game, state, player_id)

        self.hp = self.maxhp
        self.weapon_id = weapon.Medigun(game, state, self.id).id
Example #8
0
class Heavy(Character):
    # FIXME: width, height of heavy - rectangle collision
    collision_mask = mask.Mask(12, 33, True)
    max_speed = 144
    maxhp = 200

    def __init__(self, game, state, player_id):
        Character.__init__(self, game, state, player_id)

        self.hp = self.maxhp
        self.weapon_id = weapon.Minigun(game, state, self.id).id

    def step(self, game, state, frametime):
        Character.step(self, game, state, frametime)
        if self.get_player(state).leftmouse:
            self.hspeed = min(54, max(-54, self.hspeed))
Example #9
0
class Quote(Character):
    # width, height of scout - rectangle collision
    collision_mask = mask.Mask(12, 33, True)
    max_speed = 252
    maxhp = 100
    run_power = 1.4;

    def __init__(self, game, state, player_id):
        Character.__init__(self, game, state, player_id)

        self.hp = self.maxhp
        self.weapon_id = weapon.Blade(game, state, self.id).id
        self.can_doublejump = True

    def jump(self, game, state):
        if self.onground(game, state):
            self.vspeed = -300
            self.can_doublejump = True
        elif self.can_doublejump:
            self.vspeed = -300
            self.can_doublejump = False
Example #10
0
    def find_n_dot_estimate(self, fix_mask):
        '''
        Estimate the number of dots and a mask assuming the chemical potential is mu_l everywhere

        The mask is defined as a list of size len(x) where x is the x-grid. Each element is labelled as 'l0','l1' corresponding to the leads, 'di' corresponding 
        to the ith dot and 'bi' corresponding to the ith barrier.

        Counting begins from 0.
        '''

        mu = self.mu_l[0]
        mu_x = np.repeat(mu, len(self.V))

        # Use mu - V ~ n to make a preliminary classfication
        if (not fix_mask):
            prelim_mask = mask.Mask(mu_x - self.V)
            self.mask = prelim_mask
            return prelim_mask.mask_info['num_dot']
        else:
            # return value from the old calculation
            return self.mask.mask_info['num_dot']
Example #11
0
import sys
import cv2
import utils
import detection
import mask
import sqlmanager
import schedule
import track

sys.path.insert(0, "analysis/")
import analyzer

#-----------------------------
#<------ Configuration ------>
#-----------------------------
mask = mask.Mask("config-files/maskConfig.json")
db = sqlmanager.SQLManager("config-files/MySQLConfig.json")

analyzerObjct = analyzer.loadAnalyzer("config-files/analyzerConfig.json")


#-----------------------------
#<---------- Main ----------->
#-----------------------------
if __name__ == "__main__":
    # Load video here
    cap = cv2.VideoCapture('videos/testRotonda.mp4')
    # Should we resize the video frame?
    # cap.set(3, 1280)
    # cap.set(4, 720)
Example #12
0
#%%
import datasets
import mask
import numpy as np
from scipy.stats import ttest_ind_from_stats

nii_prefix = 'mri/mwp1{}.nii'
centers_list = datasets.load_centers_mcad(use_nii=True, use_csv=False,
                                          nii_prefix=nii_prefix)

_mask = mask.Mask('./data/mask', 'grey_matter_smoothed_005.nii')
d = _mask.get_mask_data().flatten()
#%%
def get_center_voxel_msn_by_label(center, label):
    persons = center.get_by_label(label)
    data = []
    for person in persons:
        data.append(np.asarray(person.nii.dataobj).flatten())
    data = np.array(data)
    mean = np.mean(data, axis=0)
    std = np.std(data, axis=0)
    count = data.shape[0]
    return mean, std, count

def gen_voxel_msn(centers_list, label_eg, label_cg):
    for center in centers_list:
        mean_eg, std_eg, count_eg = get_center_voxel_msn_by_label(center, label_eg)
        mean_cg, std_cg, count_cg = get_center_voxel_msn_by_label(center, label_cg)
        
        if count_eg and count_cg:
            t, p = ttest_ind_from_stats(mean_eg, std_eg, count_eg,
Example #13
0
class Building_Sentry(entity.MovingObject):
    max_hp = 100 # Maximum hitpoints the sentry can ever have
    starting_hp = 25 # At what hitpoints the sentry will start building
    collision_mask = mask.Mask(26, 19, True) # TODO: Implement changing masks
    build_time = 2 # Number of secs it takes to build
    hp_increment = (max_hp-starting_hp)/build_time
    animation_increment = 10/build_time # 10 == number of frames in sentry build animation

    def __init__(self, game, state, owner):
        super(Building_Sentry, self).__init__(game, state)

        self.hp = self.starting_hp
        self.isfalling = True
        self.animation_frame = 0
        self.building_time = 0

        self.owner_id = owner.id
        self.x = owner.x
        self.y = owner.y
        self.team = owner.team

        if owner.flip == True:
            self.flip = True
        else:
            self.flip = False

    def step(self, game, state, frametime):
        if self.isfalling:
            # If we've hit the floor, get us back out and build
            while game.map.collision_mask.overlap(self.collision_mask, (int(round(self.x)), int(round(self.y)))):
                self.y -= 1
                self.isfalling = False

            # Gravity
            self.vspeed += 300 * frametime

            # TODO: air resistance, not hard limit
            self.vspeed = min(800, self.vspeed)

        if not self.isfalling:
            self.hspeed = 0
            self.vspeed = 0

            if self.hp <= 0:
                self.destroy(state)
                return

            if self.building_time >= self.build_time:
                # Cap hp at max hp
                if self.hp >= self.max_hp:
                    self.hp = self.max_hp
                # Create a finished sentry, and destroy the building sentry object
                owner = state.entities[self.owner_id]
                owner.sentry = Sentry(game, state, self.owner_id, self.x, self.y, self.hp, self.flip, self.team)
                self.destroy(state)
            else:
                # Continue building
                self.hp += self.hp_increment * frametime
                self.building_time += frametime
                self.animation_frame += self.animation_increment * frametime

    def interpolate(self, prev_obj, next_obj, alpha):
        super(Building_Sentry, self).interpolate(prev_obj, next_obj, alpha)
        self.animation_frame = prev_obj.animation_frame + (next_obj.animation_frame - prev_obj.animation_frame) * alpha
        self.hp = prev_obj.hp + (next_obj.hp - prev_obj.hp) * alpha
        self.build_time = prev_obj.build_time + (next_obj.build_time - prev_obj.build_time) * alpha

    def destroy(self, state):
        # TODO: Sentry destruction syncing, bubble
        super(Building_Sentry, self).destroy(state)
Example #14
0
File: UI.py Project: Sancho42/GPO
 def file_mask_buf(self, file_path):
     mask_ = mask.Mask()
     mask_.masked(file_path)
Example #15
0
File: UI.py Project: Sancho42/GPO
 def fileMask(self):
     mask_ = mask.Mask()
     mask_.masked(self.path_entry.get())
Example #16
0
def main():
    # Init logger
    if not os.path.isdir(args.save_path):
        os.makedirs(args.save_path)
    if args.resume:
        if not os.path.isdir(args.resume):
            os.makedirs(args.resume)
    log = open(os.path.join(args.save_path, '{}.txt'.format(args.description)), 'w')
    print_log('save path : {}'.format(args.save_path), log)
    state = {k: v for k, v in args._get_kwargs()}
    print_log(state, log)
    print_log("Random Seed: {}".format(args.manualSeed), log)
    print_log("use cuda: {}".format(args.use_cuda), log)
    print_log("python version : {}".format(sys.version.replace('\n', ' ')), log)
    print_log("torch  version : {}".format(torch.__version__), log)
    print_log("cudnn  version : {}".format(torch.backends.cudnn.version()), log)
    print_log("Compress Rate: {}".format(args.rate), log)
    print_log("Epoch prune: {}".format(args.epoch_prune), log)
    print_log("description: {}".format(args.description), log)

    # Init data loader
    if args.dataset=='cifar10':
        train_loader=dataset.cifar10DataLoader(True,args.batch_size,True,args.workers)
        test_loader=dataset.cifar10DataLoader(False,args.batch_size,False,args.workers)
        num_classes=10
    elif args.dataset=='cifar100':
        train_loader=dataset.cifar100DataLoader(True,args.batch_size,True,args.workers)
        test_loader=dataset.cifar100DataLoader(False,args.batch_size,False,args.workers)
        num_classes=100
    elif args.dataset=='imagenet':
        assert False,'Do not finish imagenet code'
    else:
        assert False,'Do not support dataset : {}'.format(args.dataset)

    # Init model
    if args.arch=='cifarvgg16':
        net=models.vgg16_cifar(True,num_classes)
    elif args.arch=='resnet32':
        net=models.resnet32(num_classes)
    elif args.arch=='resnet56':
        net=models.resnet56(num_classes)
    elif args.arch=='resnet110':
        net=models.resnet110(num_classes)
    else:
        assert False,'Not finished'


    print_log("=> network:\n {}".format(net),log)
    net = torch.nn.DataParallel(net, device_ids=list(range(args.ngpu)))
    # define loss function (criterion) and optimizer
    criterion = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(net.parameters(), state['learning_rate'], momentum=state['momentum'],
                                weight_decay=state['decay'], nesterov=True)
    if args.use_cuda:
        net.cuda()
        criterion.cuda()

    recorder = RecorderMeter(args.epochs)
    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume+'checkpoint.pth.tar'):
            print_log("=> loading checkpoint '{}'".format(args.resume+'checkpoint.pth.tar'), log)
            checkpoint = torch.load(args.resume+'checkpoint.pth.tar')
            recorder = checkpoint['recorder']
            args.start_epoch = checkpoint['epoch']
            if args.use_state_dict:
                net.load_state_dict(checkpoint['state_dict'])
            else:
                net = checkpoint['state_dict']
            optimizer.load_state_dict(checkpoint['optimizer'])
            print_log("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']), log)

            if args.evaluate:
                time1=time.time()
                validate(test_loader,net,criterion,args.use_cuda,log)
                time2=time.time()
                print('validate function took %0.3f ms' % ((time2 - time1) * 1000.0))
                return
        else:
            print_log("=> no checkpoint found at '{}'".format(args.resume), log)
    else:
        print_log("=> not use any checkpoint for {} model".format(args.description), log)

    if args.original_train:
        original_train.args.arch=args.arch
        original_train.args.dataset=args.dataset
        original_train.main()
        return

    comp_rate=args.rate
    m=mask.Mask(net,args.use_cuda)
    print("-" * 10 + "one epoch begin" + "-" * 10)
    print("the compression rate now is %f" % comp_rate)

    val_acc_1, val_los_1 = validate(test_loader, net, criterion, args.use_cuda,log)
    print(" accu before is: %.3f %%" % val_acc_1)

    m.model=net
    print('before pruning')
    m.init_mask(comp_rate,args.last_index)
    m.do_mask()
    print('after pruning')
    m.print_weights_zero()
    net=m.model#update net

    if args.use_cuda:
        net=net.cuda()
    val_acc_2, val_los_2 = validate(test_loader, net, criterion, args.use_cuda,log)
    print(" accu after is: %.3f %%" % val_acc_2)
    #

    start_time=time.time()
    epoch_time=AverageMeter()
    for epoch in range(args.start_epoch,args.epochs):
        current_learning_rate=adjust_learning_rate(args.learning_rate,optimizer,epoch,args.gammas,args.schedule)
        need_hour, need_mins, need_secs = convert_secs2time(epoch_time.avg * (args.epochs - epoch))
        need_time = '[Need: {:02d}:{:02d}:{:02d}]'.format(need_hour, need_mins, need_secs)
        print_log(
            '\n==>>{:s} [Epoch={:03d}/{:03d}] {:s} [learning_rate={:6.4f}]'.format(time_string(), epoch, args.epochs,
                                                                                   need_time, current_learning_rate) \
            + ' [Best : Accuracy={:.2f}]'.format(recorder.max_accuracy(False)), log)
        train_acc,train_los=train(train_loader,net,criterion,optimizer,epoch,args.use_cuda,log)
        validate(test_loader, net, criterion,args.use_cuda, log)
        if (epoch % args.epoch_prune == 0 or epoch == args.epochs - 1):
            m.model=net
            print('before pruning')
            m.print_weights_zero()
            m.init_mask(comp_rate,args.last_index)
            m.do_mask()
            print('after pruning')
            m.print_weights_zero()
            net=m.model
            if args.use_cuda:
                net=net.cuda()

        val_acc_2, val_los_2 = validate(test_loader, net, criterion,args.use_cuda,log)

        is_best = recorder.update(epoch, train_los, train_acc, val_los_2, val_acc_2)
        if args.resume:
            save_checkpoint({
                'epoch': epoch + 1,
                'state_dict': net,
                'recorder': recorder,
                'optimizer': optimizer.state_dict(),
            }, is_best, args.resume, 'checkpoint.pth.tar')
        print('save ckpt done')

        epoch_time.update(time.time()-start_time)
        start_time=time.time()
    torch.save(net,args.model_save)
    # torch.save(net,args.save_path)
    flops.print_model_param_nums(net)
    flops.count_model_param_flops(net,32,False)
    log.close()
Example #17
0
class Sentry(entity.MovingObject):
    collision_mask = mask.Mask(26, 19, True)

    def __init__(self, game, state, owner_id, x, y, hp, flip, team):
        super(Sentry, self).__init__(game, state)
        self.owner_id = owner_id
        self.aiming_direction = 0
        self.x = x
        self.y = y
        self.hp = hp
        self.flip = flip
        self.detection_radius = 375
        self.team = team

        self.rotating = False
        self.turret_flip = flip

        self.rotatestart = 0
        self.rotateend = 4
        self.rotateindex = self.rotatestart;
        self.default_direction = 180 * self.flip
        self.direction = self.default_direction

        #targetting Queue
        self.nearest_target = -1
        self.target_queue = []

    def step(self, game, state, frametime):
        # TODO: Aim at nearest enemy
        # TODO: Clean up

        if self.hp <= 0:
            self.destroy(state)
        self.target_queue = [] #clear the list
        for obj in state.entities.values():
                if isinstance(obj, character.Character) and math.hypot(self.x-obj.x,self.y - obj.y) <= self.detection_radius:
                    target_tuple = (obj, math.hypot(self.x-obj.x,self.y - obj.y))
                    self.target_queue.append(target_tuple)
        if len(self.target_queue) > 0: #TODO: implement point_direction and adjust priorities accordingly
            self.target_queue.sort(key= lambda distance: distance[1]) #sort by the second item in the tuples; distance
            self.nearest_target = self.target_queue[0][0] #get the first part of tuple
            target_character = state.entities[self.nearest_target.id]
            target_angle = function.point_direction(self.x,self.y,target_character.x,target_character.y)
            self.direction = target_angle
            if target_character.x > self.x and self.turret_flip == True:
                self.rotating = True
            elif target_character.x < self.x and self.turret_flip == False:
                self.rotating = True
        else:
            self.nearest_target = -1

        if self.nearest_target == -1 and self.flip != self.turret_flip: #reset to old position
            self.rotating = True
            self.direction = self.default_direction

        if self.rotating == True:
            self.rotateindex += 0.15
            if (self.rotateindex >= self.rotateend):
                self.rotating = False
                self.turret_flip = not self.turret_flip
                self.rotateindex = self.rotatestart

    def interpolate(self, prev_obj, next_obj, alpha):
        super(Sentry, self).interpolate(prev_obj, next_obj, alpha)
        self.hp = prev_obj.hp + (next_obj.hp - prev_obj.hp) * alpha
        self.direction = prev_obj.direction + (next_obj.direction - prev_obj.direction) * alpha

        self.rotateindex = prev_obj.rotateindex + (next_obj.rotateindex - prev_obj.rotateindex) * alpha
        if alpha < 0.5: self.rotating = prev_obj.rotating
        else: self.rotating = next_obj.rotating
        if alpha < 0.5: self.turret_flip = prev_obj.turret_flip
        else: self.turret_flip = next_obj.turret_flip

    def destroy(self, state):
        # TODO: Sentry destruction syncing, bubble
        super(Sentry, self).destroy(state)
        owner = state.entities[self.owner_id]
        owner.sentry = None