def _evaluated_messages(self, grib_file):
        """
        Returns the evaluated_messages for all grib_messages
        :param String grib_file: path to a grib file
        :rtype: list[GRIBMessage]
        """
        pygrib = import_pygrib()

        self.dataset = pygrib.open(grib_file.filepath)
        evaluated_messages = []

        # Message id starts with "1"
        for i in range(1, self.dataset.messages + 1):
            grib_message = self.dataset.message(i)

            axes = []
            # Iterate all the axes and evaluate them with message
            # e.g: Long axis: ${grib:longitudeOfFirstGridPointInDegrees}
            #      Lat axis: ${grib:latitudeOfLastGridPointInDegrees}
            # Message 1 return: Long: -180, Lat: 90
            # Message 2 return: Long: -170, Lat: 80
            # ...
            # Message 20 return: Long: 180, Lat: -90
            for user_axis in self.user_axes:
                # find the crs_axis which are used to evaluate the user_axis (have same name)
                crs_axis = self._get_crs_axis_by_user_axis_name(user_axis.name)

                # NOTE: directPositions could be retrieved only when every message evaluated to get values for axis
                # e.g: message 1 has value: 0, message 3 has value: 2, message 5 has value: 8,...message 20 value: 30
                # then, the directPositions of axis is [0, 2, 8,...30]
                # the syntax to retrieve directions in ingredient file is: ${grib:axis:axis_name}
                # with axis_name is the name user defined (e.g: AnsiDate?axis-label="time" then axis name is: time)
                self.evaluator_slice = GribMessageEvaluatorSlice(
                    grib_message, grib_file)
                evaluated_user_axis = self._user_axis(user_axis,
                                                      self.evaluator_slice)

                # When pixelIsPoint:true then it will be adjusted by half pixels for min, max internally (recommended)
                if self.pixel_is_point is True:
                    PointPixelAdjuster.adjust_axis_bounds_to_continuous_space(
                        evaluated_user_axis, crs_axis)
                else:
                    # translate the dateTime format to float
                    if evaluated_user_axis.type == UserAxisType.DATE:
                        evaluated_user_axis.interval.low = arrow.get(
                            evaluated_user_axis.interval.low).float_timestamp
                        if evaluated_user_axis.interval.high:
                            evaluated_user_axis.interval.high = arrow.get(
                                evaluated_user_axis.interval.high
                            ).float_timestamp
                    # if low < high, adjust it
                    if evaluated_user_axis.interval.high is not None \
                        and evaluated_user_axis.interval.low > evaluated_user_axis.interval.high:
                        evaluated_user_axis.interval.low, evaluated_user_axis.interval.high = evaluated_user_axis.interval.high, evaluated_user_axis.interval.low
                evaluated_user_axis.statements = user_axis.statements
                axes.append(evaluated_user_axis)
            evaluated_messages.append(GRIBMessage(i, axes, grib_message))

        return evaluated_messages
Example #2
0
    def _axis_subset(self, crs_axis, nc_file):
        """
        Returns an axis subset using the given crs axis in the context of the nc file
        :param CRSAxis crs_axis: the crs definition of the axis
        :param File nc_file: the netcdf file
        :rtype AxisSubset
        """
        user_axis = self._user_axis(self._get_user_axis_by_crs_axis_name(crs_axis.label), NetcdfEvaluatorSlice(nc_file))

        # Normally, without pixelIsPoint:true, in the ingredient needs to +/- 0.5 * resolution for each regular axis
        # e.g: resolution for axis E is 10000, then
        # "min": "${netcdf:variable:E:min} - 10000 / 2",
        # "max": "${netcdf:variable:E:max} + 10000 / 2",
        # with pixelIsPoint: true, no need to add these values as the service will do it automatically
        if self.pixel_is_point:
            PointPixelAdjuster.adjust_axis_bounds_to_continuous_space(user_axis, crs_axis)
        else:
            # No adjustment for all regular axes but still need to translate time in datetime to decimal to calculate
            if user_axis.type == UserAxisType.DATE:
                user_axis.interval.low = decimal.Decimal(str(arrow.get(user_axis.interval.low).float_timestamp))
                if user_axis.interval.high:
                    user_axis.interval.high = decimal.Decimal(str(arrow.get(user_axis.interval.high).float_timestamp))
            # if low < high, adjust it
            if user_axis.interval.high is not None and user_axis.interval.low > user_axis.interval.high:
                user_axis.interval.low, user_axis.interval.high = user_axis.interval.high, user_axis.interval.low

        high = user_axis.interval.high if user_axis.interval.high else user_axis.interval.low
        origin = PointPixelAdjuster.get_origin(user_axis, crs_axis)

        if isinstance(user_axis, RegularUserAxis):
            geo_axis = RegularAxis(crs_axis.label, crs_axis.uom, user_axis.interval.low, high, origin, crs_axis)
        else:
            if user_axis.type == UserAxisType.DATE:
                if crs_axis.is_uom_day():
                    coefficients = self._translate_day_date_direct_position_to_coefficients(user_axis.interval.low,
                                                                                            user_axis.directPositions)
                else:
                    coefficients = self._translate_seconds_date_direct_position_to_coefficients(user_axis.interval.low,
                                                                                                user_axis.directPositions)
            else:
                coefficients = self._translate_number_direct_position_to_coefficients(user_axis.interval.low,
                                                                                      user_axis.directPositions)
            geo_axis = IrregularAxis(crs_axis.label, crs_axis.uom, user_axis.interval.low, high, origin, coefficients, crs_axis)

        grid_low = 0
        grid_high = PointPixelAdjuster.get_grid_points(user_axis, crs_axis)

        # NOTE: Grid Coverage uses the direct intervals as in Rasdaman
        if self.grid_coverage is False and grid_high > grid_low:
            grid_high -= 1

        grid_axis = GridAxis(user_axis.order, crs_axis.label, user_axis.resolution, grid_low, grid_high)
        if user_axis.type == UserAxisType.DATE:
            self._translate_decimal_to_datetime(user_axis, geo_axis)

        return AxisSubset(CoverageAxis(geo_axis, grid_axis, user_axis.dataBound),
                          Interval(user_axis.interval.low, user_axis.interval.high))
Example #3
0
    def _axis_subset(self, crs_axis, evaluator_slice, resolution=None):
        """
        Returns an axis subset using the given crs axis in the context of the gdal file
        :param CRSAxis crs_axis: the crs definition of the axis
        :param GDALEvaluatorSlice evaluator_slice: the evaluator for GDAL file
        :param resolution: Known axis resolution, no need to evaluate sentence expression from ingredient file (e.g: Sentinel2 recipe)
        :rtype AxisSubset
        """
        user_axis = self._user_axis(
            self._get_user_axis_by_crs_axis_name(crs_axis.label),
            evaluator_slice)
        if resolution is not None:
            user_axis.resolution = resolution

        high = user_axis.interval.high if user_axis.interval.high is not None else user_axis.interval.low

        if user_axis.type == UserAxisType.DATE:
            # it must translate datetime string to float by arrow for calculating later
            user_axis.interval.low = arrow.get(
                user_axis.interval.low).float_timestamp
            if user_axis.interval.high is not None:
                user_axis.interval.high = arrow.get(
                    user_axis.interval.high).float_timestamp

        if isinstance(user_axis, RegularUserAxis):
            geo_axis = RegularAxis(crs_axis.label, crs_axis.uom,
                                   user_axis.interval.low, high,
                                   user_axis.interval.low, crs_axis)
        else:
            # Irregular axis (coefficients must be number, not datetime string)
            if user_axis.type == UserAxisType.DATE:
                if crs_axis.is_time_day_axis():
                    coefficients = self._translate_day_date_direct_position_to_coefficients(
                        user_axis.interval.low, user_axis.directPositions)
                else:
                    coefficients = self._translate_seconds_date_direct_position_to_coefficients(
                        user_axis.interval.low, user_axis.directPositions)
            else:
                coefficients = self._translate_number_direct_position_to_coefficients(
                    user_axis.interval.low, user_axis.directPositions)

            self._update_for_slice_group_size(self.coverage_id, user_axis,
                                              crs_axis, coefficients)

            geo_axis = IrregularAxis(crs_axis.label, crs_axis.uom,
                                     user_axis.interval.low, high,
                                     user_axis.interval.low, coefficients,
                                     crs_axis)

        if not crs_axis.is_x_axis() and not crs_axis.is_y_axis():
            # GDAL model is 2D so on any axis except x/y we expect to have only one value
            grid_low = 0
            grid_high = None
            if user_axis.interval.high is not None:
                grid_high = 0
        else:
            grid_low = 0
            number_of_grid_points = decimal.Decimal(str(user_axis.interval.high)) \
                                  - decimal.Decimal(str(user_axis.interval.low))
            # number_of_grid_points = (geo_max - geo_min) / resolution
            grid_high = grid_low + number_of_grid_points / decimal.Decimal(
                user_axis.resolution)
            grid_high = HighPixelAjuster.adjust_high(grid_high)

            # Negative axis, e.g: Latitude (min <--- max)
            if user_axis.resolution < 0:
                grid_high = int(abs(math.floor(grid_high)))
            else:
                # Positive axis, e.g: Longitude (min --> max)
                grid_high = int(abs(math.ceil(grid_high)))

        # NOTE: Grid Coverage uses the direct intervals as in Rasdaman
        if self.grid_coverage is False and grid_high is not None:
            if grid_high > grid_low:
                grid_high -= 1

        grid_axis = GridAxis(user_axis.order, crs_axis.label,
                             user_axis.resolution, grid_low, grid_high)
        geo_axis.origin = PointPixelAdjuster.get_origin(user_axis, crs_axis)
        if user_axis.type == UserAxisType.DATE:
            self._translate_decimal_to_datetime(user_axis, geo_axis)
        # NOTE: current, gdal recipe supports only has 2 axes which are "bounded" (i.e: they exist as 2D axes in file)
        # and 1 or more another axes gotten (i.e: from fileName) which are not "bounded" to create 3D+ coverage.
        data_bound = crs_axis.is_y_axis() or crs_axis.is_x_axis()

        return AxisSubset(
            CoverageAxis(geo_axis, grid_axis, data_bound),
            Interval(user_axis.interval.low, user_axis.interval.high))
    def _axis_subset(self, grib_file, evaluated_messages, crs_axis):
        """
        Returns an axis subset using the given crs axis in the context of the grib file
        :param File grib_file: the current grib file (slice) is evaluated
        :param List[GirbMessages] evaluated_messages: all Grib messages was evaluated
        :param CRSAxis crs_axis: the crs definition of the axis
        :rtype AxisSubset
        """
        # first grib message from grib file, used to extract grib variables only
        first_grib_message = self.dataset.message(1)

        # As all the messages contain same axes (but different intervals), so first message is ok to get user_axis
        first_user_axis = self._get_user_axis_in_evaluated_message(
            evaluated_messages[0], crs_axis.label)
        # NOTE: we don't want to change this user_axis belongs to messages, so clone it
        user_axis = copy.deepcopy(first_user_axis)
        # Then, we calculate the geo, grid bounds, origin, resolution of this axis for the slice
        self._set_low_high(evaluated_messages, user_axis)

        high = user_axis.interval.high if user_axis.interval.high is not None else user_axis.interval.low
        origin = PointPixelAdjuster.get_origin(user_axis, crs_axis)

        if isinstance(user_axis, RegularUserAxis):
            geo_axis = RegularAxis(crs_axis.label, crs_axis.uom,
                                   user_axis.interval.low, high, origin,
                                   crs_axis)
        else:
            # after all messages was evaluated, we could get the direct_positions of the axis as in netcdf
            # then, it can evaluate the grib sentence normally, e.g: ${grib:axis:level} + 5
            evaluating_sentence = user_axis.directPositions
            direct_positions = self._get_axis_values(evaluated_messages,
                                                     user_axis)
            # convert all of values in the list to string then it can be evaluated
            direct_positions = list_util.to_list_string(direct_positions)
            evaluator_slice = GribMessageEvaluatorSlice(
                first_grib_message, grib_file, direct_positions)
            user_axis.directPositions = self.sentence_evaluator.evaluate(
                evaluating_sentence, evaluator_slice, user_axis.statements)

            # axis is datetime
            if user_axis.type == UserAxisType.DATE:
                if crs_axis.is_time_day_axis():
                    coefficients = self._translate_day_date_direct_position_to_coefficients(
                        user_axis.interval.low, user_axis.directPositions)
                else:
                    coefficients = self._translate_seconds_date_direct_position_to_coefficients(
                        user_axis.interval.low, user_axis.directPositions)
            else:
                # number axis like Index1D
                coefficients = self._translate_number_direct_position_to_coefficients(
                    user_axis.interval.low, user_axis.directPositions)

            self._update_for_slice_group_size(self.coverage_id, user_axis,
                                              crs_axis, coefficients)

            geo_axis = IrregularAxis(crs_axis.label, crs_axis.uom,
                                     user_axis.interval.low, high, origin,
                                     coefficients, crs_axis)
        grid_low = 0
        grid_high = PointPixelAdjuster.get_grid_points(user_axis, crs_axis)
        # NOTE: Grid Coverage uses the direct intervals as in Rasdaman
        if self.grid_coverage is False and grid_high > grid_low:
            grid_high -= 1
        grid_axis = GridAxis(user_axis.order, crs_axis.label,
                             user_axis.resolution, grid_low, grid_high)
        if user_axis.type == UserAxisType.DATE:
            self._translate_decimal_to_datetime(user_axis, geo_axis)

        return AxisSubset(
            CoverageAxis(geo_axis, grid_axis, user_axis.dataBound),
            Interval(user_axis.interval.low, user_axis.interval.high))
Example #5
0
    def _axis_subset(self, crs_axis, gdal_file):
        """
        Returns an axis subset using the given crs axis in the context of the gdal file
        :param CRSAxis crs_axis: the crs definition of the axis
        :param File gdal_file: the gdal file
        :rtype AxisSubset
        """
        user_axis = self._user_axis(
            self._get_user_axis_by_crs_axis_name(crs_axis.label),
            GDALEvaluatorSlice(GDALGmlUtil(gdal_file.get_filepath())))
        high = user_axis.interval.high if user_axis.interval.high else user_axis.interval.low

        if isinstance(user_axis, RegularUserAxis):
            geo_axis = RegularAxis(crs_axis.label, crs_axis.uom,
                                   user_axis.interval.low, high,
                                   user_axis.interval.low, crs_axis)
        else:
            # if irregular axis value is fetched from fileName so the coefficient is [0] as slicing
            if user_axis.directPositions == AbstractToCoverageConverter.DIRECT_POSITIONS_SLICING:
                user_axis.directPositions = AbstractToCoverageConverter.COEFFICIENT_SLICING
            geo_axis = IrregularAxis(crs_axis.label, crs_axis.uom,
                                     user_axis.interval.low, high,
                                     user_axis.interval.low,
                                     user_axis.directPositions, crs_axis)

        if not crs_axis.is_easting() and not crs_axis.is_northing():
            # GDAL model is 2D so on any axis except x/y we expect to have only one value
            grid_low = 0
            grid_high = 0
        else:
            grid_low = 0
            number_of_grid_points = decimal.Decimal(str(user_axis.interval.high)) \
                                  - decimal.Decimal(str(user_axis.interval.low))
            # number_of_grid_points = (geo_max - geo_min) / resolution
            grid_high = grid_low + number_of_grid_points / decimal.Decimal(
                user_axis.resolution)
            grid_high = HighPixelAjuster.adjust_high(grid_high)

            # Negative axis, e.g: Latitude (min <--- max)
            if user_axis.resolution < 0:
                grid_high = int(abs(math.floor(grid_high)))
            else:
                # Positive axis, e.g: Longitude (min --> max)
                grid_high = int(abs(math.ceil(grid_high)))

        # NOTE: Grid Coverage uses the direct intervals as in Rasdaman
        if self.grid_coverage is False:
            if grid_high > grid_low:
                grid_high -= 1

        grid_axis = GridAxis(user_axis.order, crs_axis.label,
                             user_axis.resolution, grid_low, grid_high)
        geo_axis.origin = PointPixelAdjuster.get_origin(user_axis, crs_axis)
        if user_axis.type == UserAxisType.DATE:
            self._translate_decimal_to_datetime(user_axis, geo_axis)
        # NOTE: current, gdal recipe supports only has 2 axes which are "bounded" (i.e: they exist as 2D axes in file)
        # and 1 or more another axes gotten (i.e: from fileName) which are not "bounded" to create 3D+ coverage.
        data_bound = crs_axis.is_northing() or crs_axis.is_easting()

        return AxisSubset(
            CoverageAxis(geo_axis, grid_axis, data_bound),
            Interval(user_axis.interval.low, user_axis.interval.high))