# log-scale the images if desireable
config['scaling'] = "minmax"
if "np.log" in config['scaling']:
    images = np.log1p(images)

# set tf random seed
tf.random.set_seed(config['random_seed'])
# ================== Import Data ==================
with tf.device(get_tf_device(20)):
    model = Sequential()
    model.add(Dense(2, activation='relu', input_shape=(256, )))
    model.compile(
        loss='mse',
        optimizer='adam',
    )
    print(model.summary())

    # Run experiment
    experiment = Experiment(
        model=model,
        config=config,
        model_type="regression",
        experiment_name="generate_results_energies_double_linreg",
    )
    experiment.run_kfold(
        images[double_indices],
        energies[double_indices],
    )
    experiment.save(save_model=True, save_indices=False)
    print("Finished experiment:", experiment.id)
Example #2
0
        model.add(Conv2D(64, (3, 3), activation='relu'))
        model.add(MaxPooling2D(pool_size=(2, 2)))
        model.add(Conv2D(64, (3, 3), activation='relu'))
        model.add(Conv2D(64, (3, 3), activation='relu'))
        model.add(Flatten())
        model.add(Dense(128, activation='relu'))
        model.add(Dense(1, activation='sigmoid'))

        model.compile(optimizer='adam',
                      loss='binary_crossentropy',
                      metrics=['accuracy'])

        # Run experiment
        experiment = Experiment(model=model,
                                config=config,
                                model_type="classification",
                                experiment_name=search_name)
        experiment.run(
            normalize_image_data(images[train_idx]),
            labels[train_idx],
            normalize_image_data(images[val_idx]),
            labels[val_idx],
        )
        experiment.save()
        id_param[experiment.id] = {
            'batch_size': b_size,
        }
search_path = get_git_root() + "experiments/searches/"
with open(search_path + search_name + ".json", "w") as fp:
    json.dump(id_param, fp, indent=2)