def run_fooof(freq_path,loc_path,save_report_path,save_variables_path,save_variable_prefix,save_variables = True
,save_report=True,freq_range=[1,30],channel = 'Oz'):

    freqIterator = folderIterator(freq_path)
    chan_inds_iterator = chanIndIterator(loc_path)

    # Constant
    bg_ppts= []# background parameters/ppts
    peak_ppts = []
    errors = []
    for chan_ind, freq_var in zip(chan_inds_iterator,freqIterator)
        if True: # if files[0].endswith(".mat"): TODO: set the conditions for safety            
            power,spectrum = getFreqValuesVec(freq_var)
            if chan_ind != -1
                power = 10**np.array(power[chan_ind])
                spectrum=np.array(spectrum).flatten()
                # Initialize FOOOF object
                fm = FOOOF(peak_width_limits=[0.5,8])
                
                # Model the power spectrum with FOOOF, and print out a report
                fm.fit(spectrum, power, freq_range)

                bg_ppts.append(fm.background_params_)
                peak_ppts.append(fm.peak_params_)
                errors.append(fm.error_)
                if save_report:
                    fm.save_report(str(freq_var[-7:-4]),save_report_path)

    if save_variables :
        with cd(save_variables_path):
            save_file(save_variable_prefix+'bg_ppts.npy',bg_ppts)
            save_file(save_variable_prefix+'peak_ppts.npy',peak_ppts)
            save_file(save_variable_prefix+'errors.npy',errors) 
def plot_all_epochs(power_path,
                    cond,
                    loc_path,
                    color,
                    end_freq=30,
                    chan='Oz',
                    subplot=False):
    '''
    In the future, allow subplot optino and ppt option
    '''
    power_itr = folderIterator(power_path)
    loc_itr = folderIterator(loc_path)
    subplot_values = 1
    for power_file, loc_file in zip(power_itr, loc_itr):
        print(power_file)
        features, freqVec = readOneFeatures(power_file, end_freq)
        print('Dimension of all of the powers')
        print(features.shape)  # sanity check
        plt.figure(subplot_values)

        chanlocs = getChanLocs(loc_file)
        if (chan in chanlocs):
            chan_ind = chanlocs.index(chan)
            # chan_powers = normalize_power(features[:,chan_ind,:])
            chan_powers = features[:, chan_ind, :]

            labels_count = features.shape[0]

            mean = np.mean(chan_powers, 0)
            std = np.std(chan_powers, axis=0)

            plt.plot(freqVec,
                     mean,
                     color,
                     label=cond + ':' + str(labels_count) + 'Epochs')
            plt.plot(freqVec, mean - std, color)
            plt.plot(freqVec, mean + std, color)

            plt.legend(loc='upper right', shadow=True, fontsize='x-large')
            power_file = power_file.decode("utf-8")
            plt.title('Participant: ' + power_file[-7:-4] + '\n Chan: ' + chan)
            plt.xlabel('Frequency (Hz)')
            plt.ylabel('Power')
        else:
            print(files[0], ' did not have ', chan)
            input('understood?')
        subplot_values += 1
def plot_all_ppt(cond_dir, conds, loc_path, color, label_itr, end_freq):
    '''
    Input:
        cond_dir:
        conds:
        loc_path:
        color:
        label_itr:
        end_freq:
    Output: 
        Warnings. It can only do 2 conditions now
    '''
    loc_itr = folderIterator(loc_path)
    c0_itr = folderIterator(cond_dir + '/' + conds[0])
    c1_itr = folderIterator(cond_dir + '/' + conds[1])
    for cond0, cond1 in zip(c0_itr, c1_itr):
        pass
Example #4
0
loc_dir = '/Volumes/SHard/Tsuchiya_Lab_Data/Probes/chanLocs/'
conds = ['Off', 'On']

##########
# Script #
##########

with cd(fooof_vars_path):
    peak_ppts = np.load('basepeak_ppts.npy')

# Functions to apply for list
alpha = lambda arr: float('nan') if arr.size == 0 else findAlpha(arr)
peaks = list(map(alpha, peak_ppts))
peaks = [round(peak, 1) for peak in peaks]  # round it to 0.1 scale

folder_iter_wrapper = lambda cond: folderIterator(freq_path + '/' + cond)

#TODO: ughhhh, generalize it... cond1 cond2...
# Get folder iterators for conditions
cond0_itr = folder_iter_wrapper(conds[0])
cond1_itr = folder_iter_wrapper(conds[1])
chan_inds_itr = chanIndIterator(loc_dir)

plt.figure()
# The difference of conditions with respect to alpha(cond1 - cond0)
alpha_diffs = getDiffs(cond0_itr,
                       cond1_itr,
                       chan_inds_itr,
                       peaks,
                       avoid_flickers=True)
plot_scatter(list(range(len(alpha_diffs))),