Example #1
0
 def test_macos(self):
     self.fs.os = OSType.MACOS
     path = '/foo/bar'
     self.assertEqual(path, os.path.join('/', 'foo', 'bar'))
     self.assertEqual(('', 'C:/foo/bar'), os.path.splitdrive('C:/foo/bar'))
     self.fs.create_file(path)
     self.assertTrue(os.path.exists(path))
     self.assertTrue(os.path.exists(path.upper()))
     self.assertTrue(os.path.ismount('/'))
     self.assertFalse(os.path.ismount('//share/foo'))
Example #2
0
 def test_windows(self):
     self.fs.os = OSType.WINDOWS
     path = r'C:\foo\bar'
     self.assertEqual(path, os.path.join('C:\\', 'foo', 'bar'))
     self.assertEqual(('C:', r'\foo\bar'), os.path.splitdrive(path))
     self.fs.create_file(path)
     self.assertTrue(os.path.exists(path))
     self.assertTrue(os.path.exists(path.upper()))
     self.assertTrue(os.path.ismount(r'\\share\foo'))
     self.assertTrue(os.path.ismount(r'C:'))
 def test_macos(self):
     self.fs.os = OSType.MACOS
     path = '/foo/bar'
     self.assertEqual(path, os.path.join('/', 'foo', 'bar'))
     self.assertEqual(('', 'C:/foo/bar'), os.path.splitdrive('C:/foo/bar'))
     self.fs.create_file(path)
     self.assertTrue(os.path.exists(path))
     self.assertTrue(os.path.exists(path.upper()))
     self.assertTrue(os.path.ismount('/'))
     self.assertFalse(os.path.ismount('//share/foo'))
     self.assertEqual('/', os.sep)
     self.assertEqual('/', os.path.sep)
     self.assertEqual(None, os.altsep)
     self.assertEqual(':', os.pathsep)
     self.assertEqual('\n', os.linesep)
     self.assertEqual('/dev/null', os.devnull)
Example #4
0
def smallest_r(n , log_2_n):
	#find smallest r such that order_r(n) > [log_2(n)]**2
	#if f and n are not coprime, then SKIP this r.
	print "Running smallest_r(n , log_2_n).."
	print "log_2_n is: "+str(log_2_n)
	
	#calculate [log_2(n)]**2
	log_2_n_squared = pow(log_2_n,2)
	print "log_2_n_squared is: "+str(log_2_n_squared)

	#intialise r and order_r_n
	r = 1
	#order_r_n = 1

	# ********** what does it mean by ord_r(n) ??? -> pow(n, ord_r(n))=1 ********** ??? 
	# What is the Group G? - Multiplicative Group - (Z/rZ)*
	#Z_n - denotes set of integers modulo n
	#F_p denotes finite field with p elements

	#find smallest r
	while r <= math.upper(pow(log_2_n,5)):
		#if order_r_n <> 1:
		
		#order_r(n) > 1 - Hence there must be a prime divisor p of n, s.t. order_p(n) > 1
		#p > r. (n,r)=1
		order_r_n = calc_order(r,n) #exponent_g_n(r, 1, n) ???
		
		if order_r_n <= log_2_n_squared:
			r = r + 1
		elif order_r_n > log_2_n_squared:
			#check if r and n are coprime
			if gcd(r,n) == 1:
				r = r + 1
			else:
				print "r found: "+str(r)
				status = True				
				return r, status		
		else:
			print "order_r_n: "+str(order_r_n)+", log_2_n_squared: "+str(log_2_n_squared)
	if r == 1:
		status = False				
		return r, status
		print "r not found!