Example #1
0
def sp(n, m):
    if n == 0: return 1
    if n <= 1 or m <= 1: return 0
    if n == 2: return 1
    s = 0
    for i in takewhile(lambda x: x <= m, primes):
        ni = n - i
        if i <= ni:
            s += sp(ni, i)
        else:
            s += sp(ni, sieves[ni])
    return s
Example #2
0
def sp(n, m):
    if n == 0: return 1
    if n <= 1 or m <= 1: return 0
    if n == 2: return 1
    s = 0
    for i in takewhile(lambda x: x <= m, primes):
        ni = n - i
        if i <= ni:
            s += sp(ni, i)
        else:
            s += sp(ni, sieves[ni])
    return s
Example #3
0
#!/usr/bin/python
# -*- coding: utf-8 -*-

#Let pn be the nth prime: 2, 3, 5, 7, 11, ..., and let r be the remainder when (pn−1)n + (pn+1)n is divided by pn2.

#For example, when n = 3, p3 = 5, and 43 + 63 = 280 ≡ 5 mod 25.

#The least value of n for which the remainder first exceeds 109 is 7037.

#Find the least value of n for which the remainder first exceeds 1010.

#Answer:
	#21035
#https://github.com/skydark/project-euler/blob/master/123.py
from time import time; t=time()
from mathplus import get_primes_by_sieve, takewhile

M = 10**10
L = 1000000

p, sieves = get_primes_by_sieve(L)

for n in takewhile(lambda x: 2*x*p[x-1] <= M, range(7037, L, 2)): pass

print(n+2)#, time()-t
Example #4
0
def no_primes_larger_than(n, p):
    for pp in takewhile(lambda x: x <= p, primes):
        while n % pp == 0:
            n //= pp
    return n == 1
Example #5
0
#!/usr/bin/python
# -*- coding: utf-8 -*-

#Let pn be the nth prime: 2, 3, 5, 7, 11, ..., and let r be the remainder when (pn−1)n + (pn+1)n is divided by pn2.

#For example, when n = 3, p3 = 5, and 43 + 63 = 280 ≡ 5 mod 25.

#The least value of n for which the remainder first exceeds 109 is 7037.

#Find the least value of n for which the remainder first exceeds 1010.

#Answer:
#21035
#https://github.com/skydark/project-euler/blob/master/123.py
from time import time
t = time()
from mathplus import get_primes_by_sieve, takewhile

M = 10**10
L = 1000000

p, sieves = get_primes_by_sieve(L)

for n in takewhile(lambda x: 2 * x * p[x - 1] <= M, range(7037, L, 2)):
    pass

print(n + 2)  #, time()-t
Example #6
0
def no_primes_larger_than(n, p):
    for pp in takewhile(lambda x: x <= p, primes):
        while n % pp == 0:
            n //= pp
    return n == 1