def __init__(self): BaseFeaturizer.__init__(self) self._types = ["cn", "lin"] self._labels = ["cn", "lin"] self._paras = [[], []] for i in range(5, 180, 5): self._types.append("bent") self._labels.append("bent{}".format(i)) self._paras.append([float(i), 0.0667]) for t in ["tet", "oct", "bcc", "q2", "q4", "q6", "reg_tri", "sq", \ "sq_pyr", "tri_bipyr"]: self._types.append(t) self._labels.append(t) self._paras.append([])
def generate_tables(): """ Generate nicely formatted tables of all features in RST format. Args: None Returns: Prints a formatted string, where each main entry is a separate table representing one module of featurizers. """ mmfeat = "====================\nTable of Featurizers\n====================\n" mmdes = "Below, you will find a description of each featurizer, listed in " \ "tables grouped by module.\n" subclasses = [] scnames = BaseFeaturizer.__subclasses__() + [BaseFeaturizer] scnames += conversions.ConversionFeaturizer.__subclasses__() for sc in scnames: scdict = {"name": sc.__name__} scdict["doc"] = sc.__doc__.splitlines()[1].lstrip() scdict["module"] = sc.__module__ scdict["type"] = sc.__module__.split(".")[-1] subclasses.append(scdict) df = pd.DataFrame(subclasses) print(mmfeat) print(mmdes) for ftype in np.unique(df['type']): dftable = df[df['type'] == ftype] dftable['codename'] = [":code:`" + n + "`" for n in dftable['name']] ftype_border = "-" * len(ftype) mod = "(" + dftable['module'].iloc[0] + ")" des_border = "-" * len(mod_summs[ftype]) print(ftype_border) print(ftype) print(ftype_border) print(mod_summs[ftype]) print(des_border + "\n") print(mod) print("\n.. list-table::") print(" :align: left") print(" :widths: 30 70") # print(" :width: 70%") print(" :header-rows: 1\n") print(" * - Name") print(" - Description") for i, n in enumerate(dftable['codename']): # url = url_base + dftable["module"].iloc[0] + "." + \ # dftable["name"].iloc[i] + ">`_" url = "" print(f" * - {n}") description = dftable["doc"].iloc[i] print(f" - {description} {url} ") print("\n\n")
def generate_tables(): """ Generate nicely formatted tables of all features in RST format. Args: None Returns: tables ([str]): A list of formatted strings, where each entry is a separate table representing one module. """ mmfeat = "====================\nTable of Featurizers\n====================\n" mmdes = "Below, you will find a description of each featurizer, listed in " \ "tables grouped by module.\n" tables = [mmfeat, mmdes] subclasses = [] scnames = BaseFeaturizer.__subclasses__() + [BaseFeaturizer] scnames += conversions.ConversionFeaturizer.__subclasses__() for sc in scnames: scdict = {"name": sc.__name__} scdict["doc"] = sc.__doc__.splitlines()[1].lstrip() scdict["module"] = sc.__module__ scdict["type"] = sc.__module__.split(".")[-1] subclasses.append(scdict) df = pd.DataFrame(subclasses) for ftype in np.unique(df['type']): dftable = df[df['type'] == ftype] dftable['codename'] = [":code:`" + n + "`" for n in dftable['name']] mod = "\n(" + dftable['module'].iloc[0] + ")\n\n" namelen = max([len(n) for n in dftable['codename']]) # doclen = max([len(d) for d in dftable['doc']]) doclen = 400 borderstr = "=" * namelen + " " + "=" * doclen + "\n" headerstr = "Name" + " " * (namelen - 1) + "Description\n" tablestr = "" for i, n in enumerate(dftable['codename']): url = url_base + dftable["module"].iloc[0] + "." + \ dftable["name"].iloc[i] + ">`_" tablestr += n + " " * (namelen - len(n) + 3) + \ dftable['doc'].iloc[i] + url + "\n" ftype_border = "\n" + "-" * len(ftype) + "\n" des_border = "-" * len(mod_summs[ftype]) + "\n" tables.append(ftype_border + ftype + ftype_border + mod_summs[ftype] + des_border + mod + borderstr + headerstr + borderstr + tablestr + borderstr + "\n\n") return tables
def __init__(self): BaseFeaturizer.__init__(self)
def __init__(self, featurizer: BaseFeaturizer, composition: Composition): self._featurizer = featurizer self._composition = composition self._values = featurizer.featurize(self._composition)