def test_conversion_multiindex_dynamic(self): # test dynamic target_col_id setting with multiindex coords = [[0, 0, 0], [0.75, 0.5, 0.75]] lattice = Lattice([[3.8401979337, 0.00, 0.00], [1.9200989668, 3.3257101909, 0.00], [0.00, -2.2171384943, 3.1355090603]]) struct = Structure(lattice, ["Si"] * 2, coords) d = {'structure_dict': [struct.as_dict(), struct.as_dict()]} df_2lvl = DataFrame(data=d) df_2lvl.columns = MultiIndex.from_product((["custom"], df_2lvl.columns.values)) dto = DictToObject() df_2lvl = dto.featurize_dataframe(df_2lvl, ('custom', 'structure_dict'), multiindex=True) new_col_id = ('DictToObject', 'structure_dict_object') self.assertEqual(df_2lvl[new_col_id].tolist()[0], struct) self.assertEqual(df_2lvl[new_col_id].tolist()[1], struct)
def test_dict_to_object(self): coords = [[0, 0, 0], [0.75, 0.5, 0.75]] lattice = Lattice([[3.8401979337, 0.00, 0.00], [1.9200989668, 3.3257101909, 0.00], [0.00, -2.2171384943, 3.1355090603]]) struct = Structure(lattice, ["Si"] * 2, coords) d = {'structure_dict': [struct.as_dict(), struct.as_dict()]} df = DataFrame(data=d) dto = DictToObject(target_col_id='structure') df = dto.featurize_dataframe(df, 'structure_dict') self.assertEqual(df["structure"].tolist()[0], struct) self.assertEqual(df["structure"].tolist()[1], struct) # test dynamic target_col_id setting df = DataFrame(data=d) dto = DictToObject() df = dto.featurize_dataframe(df, 'structure_dict') self.assertEqual(df["structure_dict_object"].tolist()[0], struct) self.assertEqual(df["structure_dict_object"].tolist()[1], struct)
def _tidy_column(self, df, featurizer_type): """ Various conversions to homogenize columns for featurization input. For example, take a column of compositions and ensure they are decorated with oxidation states, are not strings, etc. Args: df (pandas.DataFrame) featurizer_type: The key defining the featurizer input. For example, composition featurizers should have featurizer_type of "composition". Returns: df (pandas.DataFrame): DataFrame with featurizer_type column ready for featurization. """ # todo: Make the following conversions more robust (no [0] type checking) type_tester = df[featurizer_type].iloc[0] if featurizer_type == self.composition_col: # Convert formulas to composition objects if isinstance(type_tester, str): self.logger.info( self._log_prefix + "Compositions detected as strings. Attempting " "conversion to Composition objects...") stc = StrToComposition(overwrite_data=True, target_col_id=featurizer_type) df = stc.featurize_dataframe(df, featurizer_type, multiindex=self.multiindex, ignore_errors=True, inplace=False) elif isinstance(type_tester, dict): self.logger.info(self._log_prefix + "Compositions detected as dicts. Attempting " "conversion to Composition objects...") df[featurizer_type] = [ Composition.from_dict(d) for d in df[featurizer_type] ] # Convert non-oxidstate containing comps to oxidstate comps if self.guess_oxistates: self.logger.info( self._log_prefix + "Guessing oxidation states of compositions, as" " they were not present in input.") cto = CompositionToOxidComposition( target_col_id=featurizer_type, overwrite_data=True, return_original_on_error=True, max_sites=-50) try: df = cto.featurize_dataframe(df, featurizer_type, multiindex=self.multiindex, inplace=False) except Exception as e: self.logger.info(self._log_prefix + "Could not decorate oxidation states due " "to {}. Excluding featurizers based on " "composition oxistates".format(e)) classes_require_oxi = [ c.__class__.__name__ for c in CompositionFeaturizers().need_oxi ] self.exclude.extend(classes_require_oxi) else: # Convert structure/bs/dos dicts to objects (robust already) if isinstance(type_tester, (dict, str)): self.logger.info(self._log_prefix.capitalize() + "{} detected as string or dict. Attempting " "conversion to {} objects..." "".format(featurizer_type, featurizer_type)) if isinstance(type_tester, str): raise ValueError("{} column is type {}. Cannot convert." "".format(featurizer_type, type(type_tester))) dto = DictToObject(overwrite_data=True, target_col_id=featurizer_type) df = dto.featurize_dataframe(df, featurizer_type, inplace=False) # Decorate with oxidstates if featurizer_type == self.structure_col and \ self.guess_oxistates: self.logger.info( self._log_prefix + "Guessing oxidation states of structures if they were " "not present in input.") sto = StructureToOxidStructure( target_col_id=featurizer_type, overwrite_data=True, return_original_on_error=True, max_sites=-50) try: df = sto.featurize_dataframe( df, featurizer_type, multiindex=self.multiindex, inplace=False) except Exception as e: self.logger.info( self._log_prefix + "Could not decorate oxidation states on structures " "due to {}.".format(e)) return df