def plot(data, weights): data_mat = array(df['density', 'radio_suger'].values[:,:]) label_mat = mat(df['label'].values[:]).transpose() m = shape(data_mat)[0] xcord1 = [] ycord1 = [] xcord2 = [] ycord2 = [] for i in xrange(m): if label_mat[i] == 1: xcord1.append(data_mat[i]) ycore1.append(label_mat[i]) else: xcord2.append(data_mat[i]) ycord2.append(label_mat[i]) plt.figure(1) ax = plt.subplot(111) ax.scatter(xcord1, ycord1, s=30, c='red', marker='s') ax.scatter(xcord2, ycord2, s=30, c='greeen') x = arange(-0.2, 0.8, 1) y = array((-w[0,0]*x)/w[0,1]) print shape(x) print shape(y) plt.sca(ax) plt.plot(x,y) plt.xlabel('density') plt.ylabel('radio_suger') plt.title('LDA') plt.show()
def visualize_data(): """""" df = pd.read_csv('sp500_joined_closes.csv') df_corr = df.corr() data = df_corr.values fig = plt.figure() ax = fig.add_subplot(1, 1, 1) # An one by one plot. heatmap = ax.pcolor(data, cmap = plt.cm.RdYlGn) fig.colorbar(heatmap) ax.set_xticks(np.arange(data.shape[0])+ 0.5, minor=False) ax.set_yticks(np.arange(data.shape[1])+0.5, minor=False) ax.inverst_yaxis() ax.xaxis.tick_top() column_labels = df_corr.columns row_labels = df_corr.index ax.set_xticklables(column_labels) ax.set_yticklabels(row_labels) plt.xticks(rotation=90) heatmap.set_clim(-1, 1) plt.tight_layout() plt.show()
def plot_multiple(plot_function, args, filename=None, figsize=(14,9), label_left = "Density", label_bottom="Coarse Grain Measure Value", label_right="Energy", legend_pos=(1.40,0.90), legend_labels=None): fig = plt.figure(figsize=figsize) #figure(num=None, figsize=(8, 6), dpi=80, facecolor='w', edgecolor='k') num_structs = len(args) rows = int(1.5 * math.sqrt(num_structs)) cols = int(math.ceil(num_structs / float(rows))) ls,lb = None,None #figsize(cols * 4, rows * 3) for i, arg in enumerate(args): ax = fig.add_subplot(rows, cols, i+1) try: (ls, lb) = plot_function(arg, ax=ax) except Exception: import traceback print >>sys.stderr, traceback.format_exc() #print >>sys.stderr, "Error:", str(e) continue fig.add_subplot(rows, cols, 1) ax = fig.add_subplot(rows, cols, num_structs) #ls1, lb1 = ax1.get_legend_handles_labels() if label_bottom is not None: fig.text(0.5, 0.00, label_bottom, ha='center', va='center', fontsize=13) if label_left is not None: fig.text(0.00, 0.60, label_left, ha='center', va='center', rotation='vertical', fontsize=13) if label_right is not None: fig.text(1., 0.60, label_right, ha='center', va='center', rotation='vertical', fontsize=13) plt.tight_layout() plt.subplots_adjust(top=1.30) if legend_labels is not None: lb = legend_labels if ls is not None and lb is not None: plt.legend(ls, lb, bbox_to_anchor=legend_pos, loc=2, borderaxespad=0.) if filename is not None: # blah plt.savefig(filename, bbox_inches='tight') return ax
def plot_the_loss_curve(epochs, mae_training, mae_validation): """Plot a curve of loss vs. epoch.""" plt.figure() plt.xlabel("Epoch") plt.ylabel("Root Mean Squared Error") plt.plot(epochs[1:], mae_training[1:], label="Training Loss") plt.plot(epochs[1:], mae_validation[1:], label="Validation Loss") plt.legend() # We're not going to plot the first epoch, since the loss on the first epoch # is often substantially greater than the loss for other epochs. merged_mae_lists = mae_training[1:] + mae_validation[1:] highest_loss = max(merged_mae_lists) lowest_loss = min(merged_mae_lists) delta = highest_loss - lowest_loss print(delta) top_of_y_axis = highest_loss + (delta * 0.05) bottom_of_y_axis = lowest_loss - (delta * 0.05) plt.ylim([bottom_of_y_axis, top_of_y_axis]) plt.show()
temp_list = [] filtered = include_keys(info, keep) filtered.update({'ticker': ticker}) temp_list.append(filtered) # filtered = filtered.update({'ticker': ticker}) df = pd.DataFrame(temp_list) # df['lastDividendDate'] = datetime.datetime.fromtimestamp(df['lastDividendDate']).isoformat() # df['lastDividendDate'] = pd.to_datetime(df['lastDividendDate'], format='%Y-%m-%dT%H:%M:%S') return df, info, hist_div, mean_dividend for i, ticker in enumerate(tech): df, info, hist_div, mean_dividend = get_data(ticker) if len(hist_div) == 0: print("No dividends to graph") pass else: # plt.figure(i) # ax = sns.distplot(hist_div, bins = 50) # ax.set_title("Stock " + ticker) fig = plt.figure() ax = plt.axes() ax.plot(hist_div) ax.set_title("Stock " + ticker)
target_size=(150, 150), batch_size=20, class_mode='binary') validation_generator = test_datagen.flow_from_directory(validation_dir, target_size=(150, 150), batch_size=20, class_mode='binary') model.compile(loss='binary_crossentropy', optimizer=optimizers.RMSprop(lr=2e-5), metrics=['acc']) history = model.fit_generator(train_generator, steps_per_epoch=100, epochs=30, validation_data=validation_generator, validation_steps=50) acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(1, len(acc) + 1) plt.plot(epochs, acc, 'bo', label='Training acc') plt.plot(epochs, val_acc, 'b', label='Validation acc') plt.title('Training and validation accuracy') plt.legend() plt.figure() plt.plot(epochs, loss, 'bo', label='Training loss') plt.plot(epochs, val_loss, 'b', label='Validation loss') plt.title('Training and validation loss') plt.legend() plt.show()
verts = [] for row in csv_reader: verts.append(row) if float(row[0]) > bigx: bigx = float(row[0] if float(row[1]) > bigy: bigy = float(row[1] if float(row[0]) > smallx: smallx = float(row[0] if float(row[1]) > smally: smally = float(row[1] verts.sort() x_arr = [] y_arr = [] for vert in verts: x_arr.append(vert[0]) y_arr.append(vert[1]) fig = plt.figure() ax = fig.add_axes([0.1, 0.1, 0.8, 0.8) ax.set_xlabel('x data') ax.set_ylabel('y data') ax.set_xlim(smallx,bigx) ax.set_ylim(smally,bigy) ax.plot(x_arr,y_arr,color='blue',lw=2) plt.show() fig.savefig('test.png')
'K Nearest Neighbors (KNN)': KNN(contamination=outliers_fraction), 'Average KNN': KNN(method='mean',contamination=outliers_fraction) } xx , yy = np.meshgrid(np.linspace(0,1 , 200), np.linspace(0, 1, 200)) for i, (clf_name, clf) in enumerate(classifiers.items()): clf.fit(X) # predict raw anomaly score scores_pred = clf.decision_function(X) * -1 # prediction of a datapoint category outlier or inlier y_pred = clf.predict(X) n_inliers = len(y_pred) - np.count_nonzero(y_pred) n_outliers = np.count_nonzero(y_pred == 1) plt.figure(figsize=(10, 10)) # copy of dataframe dfx = df dfx['outlier'] = y_pred.tolist() # IX1 - inlier feature 1, IX2 - inlier feature 2 IX1 = np.array(dfx['Item_MRP'][dfx['outlier'] == 0]).reshape(-1,1) IX2 = np.array(dfx['Item_Outlet_Sales'][dfx['outlier'] == 0]).reshape(-1,1) # OX1 - outlier feature 1, OX2 - outlier feature 2 OX1 = dfx['Item_MRP'][dfx['outlier'] == 1].values.reshape(-1,1) OX2 = dfx['Item_Outlet_Sales'][dfx['outlier'] == 1].values.reshape(-1,1) print('OUTLIERS : ',n_outliers,'INLIERS : ',n_inliers, clf_name)