def redo_axes_ticks(self, axes:matplotlib.axes.Axes, x_len:int, y_len:int): downsample = self.w_downsample.value() x_stops = np.linspace(0, x_len, 6) x_stops_downsampled = x_stops / downsample axes.set_xticks(x_stops_downsampled) axes.set_xticklabels(["%d" % x for x in x_stops]) y_stops = np.linspace(0, y_len, 6)[::-1] y_stops_downsampled = y_stops / downsample axes.set_yticks(y_stops_downsampled) axes.set_yticklabels(["%d" % y for y in y_stops])
def club_tags(unencoded_clubs_list): """ Creates a bar graph showing of the number of occurrances of each possible club tag. By using a dictionary to count club tag occurrances, the function then creates a matplotlib bar graph using numpy representations of the dictionary information. The graph is formatted and pushed as a Response type for view on the server. Returns: -------- Response The graph """ club_dict = {} for clubs in unencoded_clubs_list: for tag in clubs.get_category(): if tag in club_dict: club_dict[tag] = club_dict[tag] + 1 else: club_dict[tag] = 1 x = np.zeros(len(club_dict)) index_counter = 0 for tag in club_dict: x[index_counter] = club_dict.get(tag) index_counter = index_counter + 1 fig = plt.figure() ax = fig.add_subplot() bar = ax.bar(np.arange(len(club_dict)), x) labels = club_dict.keys() ax.set_xticks(np.arange(len(club_dict))) ax.set_xticklabels(labels, rotation='45', ha='right') ax.set_xlabel('Club Tags') ax.set_ylabel('Number of Occurrances') ax.set_title('Number of Club Tag Occurrances') for rect in bar: height = rect.get_height() ax.annotate('{}'.format(height), xy=(rect.get_x() + rect.get_width() / 2, height), xytext=(0, 3), textcoords="offset points", ha='center', va='bottom') plt.tight_layout() output = io.BytesIO() FigureCanvas(fig).print_png(output) return Response(output.getvalue(), mimetype='image/png')
def clubs_per_user(user_list): """ Creates a bar graph of the number of clubs per user. Using a dictionary to gather each user's name and the number of club each user is in, numpy representations of the data is used to create a matplotlib bar graph. The graph is then formatted and pushed for view on the server. Returns: -------- Response The graph """ user_club_dict = {} for user in user_list: name = user.get_user_name() user_club_dict[name] = len(user.get_user_clubs()) x = np.zeros(len(user_club_dict)) index_counter = 0 for user in user_club_dict: x[index_counter] = user_club_dict.get(user) index_counter = index_counter + 1 fig = plt.figure() ax = fig.add_subplot() bar = ax.bar(np.arange(len(user_club_dict)), x) labels = user_club_dict.keys() ax.set_xticks(np.arange(len(user_club_dict))) ax.set_xticklabels(labels, rotation='45', ha='right') ax.set_xlabel('User Name') ax.set_ylabel('Number of Clubs') ax.set_title('Number of Clubs per User') for rect in bar: height = rect.get_height() ax.annotate('{}'.format(height), xy=(rect.get_x() + rect.get_width() / 2, height), xytext=(0, 3), textcoords="offset points", ha='center', va='bottom') plt.tight_layout() output = io.BytesIO() FigureCanvas(fig).print_png(output) return Response(output.getvalue(), mimetype='image/png')
if(float(cont[j].split(" ")[-1]) < 0.0): a = 0 else: a = float(cont[j].split(" ")[-1]) yAxis[i-start].append(a*10**(-7)) x = xAxis #y = np.arange(50, 80.001, 0.75) y = np.arange(50+(start)*0.75, 50+(end)*0.75, 0.75) X, Y = np.meshgrid(x, y) if(sys.argv[1] == "reducedElectricField"): levels = [i for i in range(int(sys.argv[2]), int(sys.argv[3]), int(sys.argv[4]))] elif(sys.argv[1] == "eDens"): levels = [i/10.0 for i in range(int(sys.argv[2]), int(sys.argv[3]))]#EDENS else: levels = [-1, 0, 1]#CHEMISTRY Z = yAxis fig = plt.figure() ax = fig.add_subplot(111) ax.tick_params(labelsize=40) ax.set_xticks([-4, -3, -2, -1, 0]) CS = ax.contourf(X, Y, Z, levels) ax.set_ylabel("Altitude (km)", fontsize=40) ax.set_xlabel(r"logarithmic Time ($\mathrm{s}$)", fontsize=40) #ax.set_xlabel(r"Time ($\mathrm{ms}$)", fontsize=40) cb = plt.colorbar(CS) cb.ax.tick_params(labelsize=40) #plt.savefig("{}.png".format(sys.argv[1])) plt.show()
domain_x = 20 domain_y = 20 iterations = 200 # Should not need to adjust anything below here domain = np.genfromtxt(domain_file, skip_header=2) pos_data = np.zeros(14) dom_x, dom_y = domain.shape for time in range(0, iterations): print(time) plt.figure() plt.title("Time = {0}".format(time)) ax = plt.gca() ax.set_xticks(np.arange(-.5, 20, 1)) ax.set_yticks(np.arange(-.5, 20, 1)) ax.set_xticklabels(np.arange(0, 20, 1)) ax.set_yticklabels(np.arange(0, 20, 1)) plt.imshow(domain, cmap=cm.jet, interpolation='nearest') for i in range(0, cores): for j in range(0, int(seekers / cores)): filename = "PositionalData/pos_procseeker{0}_Iter{1}.dat".format( 1000 * i + j, time) temp_plot = np.genfromtxt(filename) plt.plot(temp_plot[:, 0], temp_plot[:, 1], 'x') #plt.show() plt.savefig("PositionalData/Positions_{0}.png".format(time), dpi=200) plt.close()
from matplotlib.animation import FuncAnimation from random import uniform, choice import os speeds = [ 0.08, -0.08, 0.07, -0.07, 0.06, -0.06, 0.05, -0.05, 0.04, -0.04, 0, 0 ] # ---------------------------CREATE FIGURES/PLOTS------------------------------ # Create upper graph fig = plt.figure(figsize=(10, 8)) ax = plt.subplot(211) # (rows, columns, plot index) ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_xticks([]) ax.set_yticks([]) x_max = 10 y_max = 6 xy_min = 0 ax.set_xlim(right=x_max) ax.set_ylim(top=y_max) # Create bottom graph ax2 = plt.subplot(212) ax2.set_xlim(right=1000) ax2.set_ylim(top=70) ax2.set_xlabel('Time') ax2.set_ylabel('Total # of People Infected')
### change point for i in range(len(list_point_end_file)): if (list_point_end_file[i] >= cut_start) & (list_point_end_file[i] < cut_end): plt.axvline(list_point_end_file[i] - cut_start, color='black', linestyle='-', linewidth=0.1) cut_lable.append(labels[i]) cut_list_point.append(list_point_end_file[i] - cut_start) # print(labels[i]) # ax.set_xticks(list_point_end_file) # ax.set_xticklabels(labels,rotation=60) ax.set_xticks(cut_list_point) ax.set_xticklabels(cut_lable, rotation=60) fig = plt.gcf() fig.set_size_inches(18, 5.5) plt.ylabel('value') plt.xlabel('Time') # plt.show() window = [] list_mean = [] list_up_variance = [] list_low_variance = [] for data in stream_data: if len(window) >= max_size: window.pop(0) window.append(data)
model = (clf1, clf2, clf3, MyCls) models = (clf.fit(X, y) for clf in model) # title for the plots titles = ('CSOVO', 'CSOVA', 'CSCS', 'Apportioned SVM') # Set-up 2x2 grid for plotting. #plt.figure() fig, sub = plt.subplots(2, 2) plt.subplots_adjust(wspace=0.4, hspace=0.4) xx, yy = make_meshgrid(X[:, 0], X[:, 1]) for clf, title, ax in zip(models, titles, sub.flatten()): plot_contours(ax, clf, xx, yy, cmap=plt.cm.coolwarm, alpha=0.8) ax.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k') ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) # ax.set_xlabel('x label') # ax.set_ylabel('Sepal width') ax.set_xticks(()) ax.set_yticks(()) ax.set_title(title) plt.show()
def create_bar_graph(data=[[[1, 2], [10, 20]]], semilog=False, add_bar_labels=True, title='Insert Fancy Title', add_legend=False, bar_colors=[], legend_labels=[]): import matplotlib.patches as mpatches from collections import deque if not bar_colors: bar_color_deque = deque([ '#1395ba', '#a2b86c', '#ebc844', '#f16c20', '#c02e1d', '#0d3c55', '#ecaa38', '#117899', '#d94e1f', '#5ca793', '#ef8b2c', '#0f5b78' ]) else: bar_color_deque = deque(bar_colors) width = 0.33 xs = data[0][0] legend_labels_queue = deque(legend_labels) handles = [] if len(data) > 1: width = 0.33 * 2 / len(data) #plot comparison from multiple archives all_unique_x = {} for series in data: for size in series[0]: all_unique_x[size] = True ind = np.arange(len(all_unique_x.keys())) rect_refs = [] fig, ax = plt.subplots() bar_shift = width / 2 #plot individual bars to allow for sparse data plots for series in data: if len(series) > 2: label = series[2] color = bar_color_deque.popleft() if legend_labels: legend_label = legend_labels_queue.popleft() else: legend_label = label handles.append(mpatches.Patch(color=color, label=legend_label)) index = 0 labeled_yet = False for ex in sorted(all_unique_x.keys()): for i in range(0, len(series[0])): if series[0][i] == ex: if 'label' in locals() and not labeled_yet: rects = ax.bar(index + bar_shift, series[1][i], width, color=color, label=label) labeled_yet = True else: rects = ax.bar(index + bar_shift, series[1][i], width, color=color) rect_refs.append(rects[0]) if add_bar_labels: bar_label(ax, rects, semilog) index += 1 bar_shift += width if semilog: ax.set_yscale('log') ax.set_xticks(ind + 0.59 - 0.045 * len(data)) if add_legend: plt.legend(handles=handles, loc=2) else: color = bar_color_deque.popleft() ys = data[0][1] ind = np.arange(len(xs)) fig, ax = plt.subplots() rects = ax.bar(ind + width, ys, color=color) ax.set_xticks(ind + width * 2) if semilog: ax.set_yscale('log') if add_bar_labels: bar_label(ax, rects, semilog) fig.set_size_inches(15, 8) ax.set_xticklabels(xs, rotation=0) ax.set_title(title) ax.set_xlabel("Object Size (Bytes)") ax.set_ylabel('MB/s') plt.show() plt.savefig('foo.png') return
plt.ylabel('Time of the Day') y = [y for y in range(6,144,6)] x = [x for x in range(0, global_count)] ax.set_yticks(y) ax.set_xticks(x) plt.xticks(rotation=50) for i in range(len(trip_IDs)): if i%5 != 0: trip_IDs[i]="" ax.set_xticklabels(trip_IDs) ax.set_yticklabels(ylabels) plt.tight_layout() plt.show() ''' #plt.subplot() pos = np.arange(len(xlabels_slots)) width = 1 ax = plt.axes() ax.set_xticks(pos + (width/2)) plt.xticks(rotation=50) ax.set_xticklabels(xlabels_slots) plt.bar(pos, frequencies[:23], width, color='r') plt.tight_layout() plt.gcf() plt.savefig('histogram' + file + '.png', bbox_inches='tight') #plt.show()
labels = [label.replace('.txt', '') for label in test_files] labels = [label.replace('20140927', '') for label in labels] stream_data = [] for test_file in test_files: dir = os.path.join(test_path, test_file) with open(dir) as txt_lines: list_point_end_file.append(len(stream_data)) for line in txt_lines: stream_data.append(int(line.replace('\n', ''))) ax = plt.subplot(111) plt.plot(stream_data) print(list_point_end_file) for i in range(len(list_point_end_file)): plt.axvline(list_point_end_file[i], color='black', linestyle='-',linewidth=0.1) ax.set_xticks(list_point_end_file) ax.set_xticklabels(labels,rotation=60) plt.ylabel('value') plt.xlabel('Time') plt.show() window_size = 6000 loop = int(len(stream_data)/window_size)+1 print(loop) start_point = 0 end_point = 0 print(len(stream_data)) change_points = [] for i in range(int(loop)): ax = plt.subplot(111) if(i == 0):
pdf.savefig(bbox_inches='tight') plt.close() with PdfPages('ImagenFantasma_x_tamaƱo.pdf') as pdf: #plt.figure(figsize=(7, 5)) labels = 'ASM', 'O3', 'O2', 'O0' barValues = [resASM[7],resC3[7],resC2[7],resC0[7]] x = [1,2,3,4] fig, ax = plt.subplots() rects1 = ax.bar(x, barValues,0.7, label='') plt.ylabel('') plt.xlabel("Implementaciones") plt.ylabel("Ciclos de clock") plt.title("Imagen Fantasma 1600x1200") ax.ticklabel_format(style='plain') ax.set_xticks(x) ax.set_xticklabels(labels) plt.grid(linestyle='-', linewidth=1, axis='y') pdf.savefig(bbox_inches='tight') plt.close() def calcularPorcentaje(asm, c): return int((asm*100)/c) for i in range(0,8): asm_vs_o3 = calcularPorcentaje(resASM[i], resC3[i]) asm_vs_o2 = calcularPorcentaje(resASM[i], resC2[i]) asm_vs_o0 = calcularPorcentaje(resASM[i], resC0[i]) print(" ") print("imagenFantasma_asm_vs_O0: " + str(asm_vs_o0) + '%')