Example #1
0
def annotate_points_with_images(ax: plt.axes, indices: Union[List[int], np.ndarray],
                                plot_data: np.ndarray, image_data: np.ndarray,
                                image_size: Tuple[int, int],
                                xybox: Tuple[float, float] = (-40., 40.)) -> None:
    """
    Annotates a plot of points with converted image data.

    :param ax: A matplotlib axes object
    :param indices: A list of indices to index image data and plot data.
    :param plot_data: A 2D projection of image data.
    :param image_data: Original image data, where each row corresponds to an array of image
    data.
    :param image_size: A tuple representing image size in pixels.
    :return: None
    """
    for i in indices:
        ab = AnnotationBbox(
            OffsetImage(
                image_data[i, :].reshape(image_size[0], image_size[1]),
                zoom=.8,
                cmap='gray'
            ),
            tuple(plot_data[i, :]),
            xybox=xybox,
            xycoords='data',
            boxcoords="offset points",
            pad=0.3,
            arrowprops=dict(arrowstyle="->"))
        ax.add_artist(ab)
Example #2
0
def plot_cov(ax: plt.axes, mean: np.ndarray, cov_matrix: np.ndarray,
             color: str) -> None:
    # Helper function to visualize the distribution
    vals, vecs = np.linalg.eigh(cov_matrix)
    x, y = vecs[:, 0]
    theta = np.degrees(np.arctan2(y, x))
    w, h = 2 * np.sqrt(vals)
    ax.add_artist(Ellipse(mean, w, h, theta, color=color, alpha=0.3))
def update_main_axes(axes: plt.axes, inside_circle: np.ndarray,
                     outside_circle: np.ndarray, circle: plt.Circle,
                     square: plt.Rectangle) -> None:
    """
    Updates the main axes with the new information prior to taking a snapshot.
    """
    axes.scatter(*(outside_circle.T), c="red", marker='.')
    axes.scatter(*(inside_circle.T), c="green", marker='.')
    axes.add_artist(circle)
    axes.add_artist(square)
Example #4
0
    def draw_one_situation(self,
                           data: Data,
                           calibration: CalibData,
                           ax: plt.axes,
                           vmax=None,
                           vmin=None,
                           title_prefix=""):
        """
        Draw one situation with object on the graph.

        Args:
            data: Data object to be visualized
            calibration: CalibData object used for calibration
            ax: matplotlib.pyplot.axes object
            vmax: max value limit of the graph
            vmin: min value limit of the graph
            title_prefix: prefix for graph title

        Returns:
            im: matplotlib.image object
        """
        obj = data
        obj.calc_delta_V(calibration)
        print(obj.x, obj.y, obj.z)
        capacitance = self.solver.solve(obj.delta_V)
        e_x, e_y, _ = self.get_COP(obj)
        im = self.solver.plot_map_in_detection_range(ax,
                                                     capacitance,
                                                     vmax=vmax,
                                                     vmin=vmin)
        circle = plt.Circle((obj.x, obj.y), 13.5, color='#F55400', fill=False)
        circle_e = plt.Circle((e_x * 2000, e_y * 2000),
                              13.5,
                              color='k',
                              fill=False)
        ax.set_xlim(-100, 100)
        ax.set_ylim(-100, 100)
        ax.add_artist(circle)
        ax.add_artist(circle_e)
        ax.set_title(title_prefix + "(" +
                     ",".join((str(obj.x), str(obj.y), str(obj.z))) + ")")
        ax.set_aspect('equal')
        return im
Example #5
0
def plot_gene_body(
    ax: plt.axes,
    gene: Mapping[str, Any],
    gene_model_height: float,
    vertical_offset: float = 0,
) -> None:
    """

    Parameters
    ----------
    ax
    gene
    gene_model_height
    vertical_offset

    Returns
    -------

    """
    gene_model_y = -gene_model_height + vertical_offset
    gene_rect = patches.Rectangle(
        xy=(1, gene_model_y),
        width=gene["length"],
        height=gene_model_height,
        facecolor="white",
        edgecolor="black",
        linewidth=1,
    )
    ax.add_artist(gene_rect)

    if "domains" in gene:
        for domain in gene["domains"]:
            domain_width = domain["end"] - domain["start"] + 1
            rect = patches.Rectangle(
                xy=(domain["start"], gene_model_y),
                width=domain_width,
                height=gene_model_height,
                facecolor=domain["color"],
                edgecolor="black",
                linewidth=1,
            )
            ax.add_artist(rect)
            ax.annotate(
                s=domain["name"],
                xy=(
                    domain["start"] + domain_width / 2,
                    gene_model_y + gene_model_height / 2,
                ),
                ha="center",
                va="center",
                color=domain["textcolor"],
            )

    if "endlabels" in gene:
        for endlabel in gene["endlabels"]:
            # spacing = gene["length"] * 0.01     # TODO: fix so that the labels match up across multiple gene models
            spacing = 10
            if endlabel["side"] == "left":
                endlabel_x = -spacing
                endlabel_ha = "right"
            elif endlabel["side"] == "right":
                endlabel_x = gene["length"] + spacing
                endlabel_ha = "left"
            else:
                raise ValueError("endlabel side must be one of 'left' or 'right'")

            ax.annotate(
                s=endlabel["text"],
                xy=(endlabel_x, gene_model_y + gene_model_height / 2),
                ha=endlabel_ha,
                va="center",
                color=endlabel["textcolor"],
            )