Example #1
0
def add_cbar(fig, ax, im, **kwargs):
    # deal with kwargs
    kw = update_dict(add_cbar_kwargs_default, kwargs)
    find_bad_keys(add_cbar_kwargs_default, kwargs, 'add_cbar')

    # get fig dimensions
    fig_width_inches, fig_height_inches = fig.get_size_inches()
    fig_aspect = fig_height_inches / fig_width_inches
    # get ax dimensions
    ax_left, ax_right, ax_bottom, ax_top = axis_range(ax)
    ax_width = ax_right - ax_left
    ax_height = ax_top - ax_bottom
    if kw.cbar_pos == 'bottom':
        orientation = 'horizontal'
        cbar_height = kw.cbar_thick / fig_height_inches
        cbar_width = cbar_height / kw.cbar_aspect * fig_aspect
        if cbar_width > kw.tol * ax_width:  # don't let cbar be thicker than plot!
            cbar_width = kw.tol * ax_width

        # centrally position colorbar underneath the axes
        label_buff = 3 / 8 / fig_height_inches  # needs to contain
        # the colorbar ticklabels and little buffer space
        lilbit = 1 / 16 / fig_height_inches
        cbar_left = ax_left + 0.5 * ax_width - 0.5 * cbar_width
        cbar_bottom = ax_bottom - lilbit - cbar_height -\
                (kw.cbar_no - 1)*(label_buff + cbar_height)
    elif kw.cbar_pos == 'right':
        orientation = 'vertical'
        cbar_width = kw.cbar_thick / fig_width_inches
        cbar_height = cbar_width / kw.cbar_aspect / fig_aspect
        if cbar_height > kw.tol * ax_height:
            cbar_height = kw.tol * ax_height

        # centrally position colorbar to right of axes
        label_buff = 3 / 4 / fig_width_inches  # needs to contain
        # the colorbar ticklabels and little buffer space
        lilbit = 1 / 16 / fig_width_inches
        cbar_bottom = ax_bottom + 0.5 * ax_height - 0.5 * cbar_height
        cbar_left = ax_right + lilbit + (kw.cbar_no - 1) * (label_buff +
                                                            cbar_width)
    cax = fig.add_axes((cbar_left, cbar_bottom, cbar_width, cbar_height))
    cbar = plt.colorbar(im, cax=cax, orientation=orientation)

    # deal with labels
    if kw.nosci or kw.logscale:
        cbar_label = kw.units
    else:
        cbar_label = (r'$\times10^{%i}\ $' % kw.exp) + kw.units

    # font size for the tick labels
    cax.tick_params(labelsize=kw.cbar_fs)
    #cbar.ax.tick_params(labelsize=fontsize)

    # ticklabel format
    if not kw.logscale:
        if kw.posdef:
            tickvals = [kw.minmax[0], kw.minmax[1]]
        else:
            tickvals = [kw.minmax[0], 0, kw.minmax[1]]
        if kw.cbar_labels is None:
            fmt = '%.' + str(kw.cbar_prec) + 'f'
            ticklabels = []
            for tickval in tickvals:
                ticklabels.append(fmt % tickval)
        else:
            ticklabels = kw.cbar_labels
        if not kw.ticklabels is None:
            ticklabels = kw.ticklabels
        if not kw.tickvals is None:
            tickvals = kw.tickvals
        cbar.set_ticks(tickvals)
        cbar.set_ticklabels(ticklabels)
    else:
        locator = ticker.LogLocator(subs='all')
        cbar.set_ticks(locator)

    if kw.cbar_pos == 'bottom':
        fig.text(cbar_left + cbar_width + lilbit*fig_aspect,\
                cbar_bottom + 0.5*cbar_height, cbar_label,\
                ha='left', va='center', fontsize=kw.cbar_fs)
    elif kw.cbar_pos == 'right':
        #fig.text(cbar_left + cbar_width + lilbit/fig_aspect,\
        #        cbar_bottom + 0.5*cbar_height, cbar_label,\
        #        ha='left', va='center', fontsize=kw.fontsize)
        cax.set_title(cbar_label, ha='left', fontsize=kw.cbar_fs)
Example #2
0
    def axis_label_and_ticks(self, axis, data_array, name, dim_to_shape):
        """
        Get dimensions and label (if present) from requested axis.
        Also retun axes tick formatters and locators.
        """

        # Create some default axis tick formatter, depending on whether log
        # for that axis will be True or False
        formatter = {
            False: ticker.ScalarFormatter(),
            True: ticker.LogFormatterSciNotation()
        }
        locator = {False: ticker.AutoLocator(), True: ticker.LogLocator()}

        dim = axis
        # Convert to Dim object?
        if isinstance(dim, str):
            dim = sc.Dim(dim)

        underlying_dim = dim
        non_dimension_coord = False
        var = None

        if dim in data_array.coords:

            dim_coord_dim = data_array.coords[dim].dims[-1]
            tp = data_array.coords[dim].dtype

            if tp == sc.dtype.vector_3_float64:
                var = make_fake_coord(dim_coord_dim,
                                      dim_to_shape[dim_coord_dim],
                                      unit=data_array.coords[dim].unit)
                form = ticker.FuncFormatter(lambda val, pos: "(" + ",".join([
                    value_to_string(item, precision=2) for item in self.
                    scipp_obj_dict[name].coords[dim].values[int(val)]
                ]) + ")" if (int(val) >= 0 and int(val) < dim_to_shape[
                    dim_coord_dim]) else "")
                formatter.update({False: form, True: form})
                locator[False] = ticker.MaxNLocator(integer=True)
                if dim != dim_coord_dim:
                    underlying_dim = dim_coord_dim

            elif tp == sc.dtype.string:
                var = make_fake_coord(dim_coord_dim,
                                      dim_to_shape[dim_coord_dim],
                                      unit=data_array.coords[dim].unit)
                form = ticker.FuncFormatter(
                    lambda val, pos: self.scipp_obj_dict[name].coords[
                        dim].values[int(val)] if (int(val) >= 0 and int(
                            val) < dim_to_shape[dim_coord_dim]) else "")
                formatter.update({False: form, True: form})
                locator[False] = ticker.MaxNLocator(integer=True)
                if dim != dim_coord_dim:
                    underlying_dim = dim_coord_dim

            elif dim != dim_coord_dim:
                # non-dimension coordinate
                non_dimension_coord = True
                if dim_coord_dim in data_array.coords:
                    var = data_array.coords[dim_coord_dim]
                else:
                    var = make_fake_coord(dim_coord_dim,
                                          dim_to_shape[dim_coord_dim])
                underlying_dim = dim_coord_dim
                form = ticker.FuncFormatter(
                    lambda val, pos: value_to_string(data_array.coords[
                        dim].values[np.abs(var.values - val).argmin()]))
                formatter.update({False: form, True: form})

            else:
                var = data_array.coords[dim]

        else:
            # dim not found in data_array.coords
            var = make_fake_coord(dim, dim_to_shape[dim])

        label = var
        if non_dimension_coord:
            label = data_array.coords[dim]

        return underlying_dim, var, label, formatter, locator
Example #3
0
def gen_snap_all(rarr, dir_name, base_name, snap_num, size, title_name=''):

    rc('font', size=15)
    fig = plt.figure()
    fig.set_figwidth(10)
    fig.set_figheight(8.05)
    fig.subplots_adjust(left=0.08, right=0.96, top=0.95, bottom=0.06)
    plt.figtext(0.5, 0.97, title_name, ha='center', size='large')

    majorLocator = ticker.MultipleLocator(10)
    minorLocator = ticker.MultipleLocator(5)

    ################### snap_den ####################################

    ax = fig.add_subplot(221)

    arr = np.sort(rarr, order='den')

    x = arr['pos'][:, 0]
    y = arr['pos'][:, 1]
    z = arr['pos'][:, 2]

    den = arr['den'][:]

    idw = np.where(arr['type'] == mp.TYPE_WARM)
    idc = np.where(arr['type'] == mp.TYPE_COLD)
    ids = np.where(arr['type'] == mp.TYPE_STAR_PARAL)

    width, height = rcParams['figure.figsize']
    sz = min(width, height)

    #	plt.xlabel('X [kpc]')
    plt.ylabel('Z [kpc]')
    cmap = mpl.cm.jet
    norm = mpl.colors.LogNorm()
    plt.scatter(x[idw], z[idw], s = 1, c = den[idw], marker = 'o', \
     cmap = cmap, norm = norm, vmin = 1e-7, vmax = 10, edgecolors = 'none')

    ax.xaxis.set_major_locator(majorLocator)
    ax.xaxis.set_minor_locator(minorLocator)
    ax.yaxis.set_major_locator(majorLocator)
    ax.yaxis.set_minor_locator(minorLocator)

    cb = plt.colorbar(ticks=ticker.LogLocator(base=10.0))
    cb.set_label('Density [cm$^{-3}$]')

    plt.xlim(-size, size)
    plt.ylim(-size, size)

    ######################## gen_snap_T ####################################
    ax = fig.add_subplot(222)
    ax.apply_aspect()

    pos = ax.get_position().get_points()
    x4 = pos[0][0]
    width = pos[1][0] - pos[0][0]
    height = pos[1][1] - pos[0][1]

    arr = np.sort(rarr, order='T')
    arr = arr[::-1]

    x = arr['pos'][:, 0]
    y = arr['pos'][:, 1]
    z = arr['pos'][:, 2]

    T = arr['T'][:]

    idw = np.where(arr['type'] == mp.TYPE_WARM)
    idc = np.where(arr['type'] == mp.TYPE_COLD)
    ids = np.where(arr['type'] == mp.TYPE_STAR_PARAL)

    #	plt.xlabel('X [kpc]')
    #	plt.ylabel('Z [kpc]')

    cmap = mpl.cm.jet
    norm = mpl.colors.LogNorm()
    plt.scatter(x[idw], z[idw], s = 1, c = T[idw], marker = 'o', cmap = cmap, \
     norm = norm, vmin = 1e3, vmax = 1e7, edgecolors = 'none')

    ax.xaxis.set_major_locator(majorLocator)
    ax.xaxis.set_minor_locator(minorLocator)
    ax.yaxis.set_major_locator(majorLocator)
    ax.yaxis.set_minor_locator(minorLocator)

    cb = plt.colorbar(ticks=ticker.LogLocator(base=10.0))
    cb.set_label('Temperature [K]')

    plt.xlim(-size, size)
    plt.ylim(-size, size)

    ################### gen_snap_cold_mass ####################################

    ax = fig.add_subplot(223)
    ax.apply_aspect()
    pos = ax.get_position().get_points()
    y4 = pos[0][1]

    arr = np.sort(rarr, order='mass')
    #	arr = rarr

    x = arr['pos'][:, 0]
    y = arr['pos'][:, 1]
    z = arr['pos'][:, 2]

    mass = arr['mass'][:]

    idw = np.where(arr['type'] == mp.TYPE_WARM)
    idc = np.where(arr['type'] == mp.TYPE_COLD)
    ids = np.where(arr['type'] == mp.TYPE_STAR_PARAL)

    if np.size(idc) == 0:
        return

    plt.xlabel('X [kpc]')
    plt.ylabel('Z [kpc]')
    #	plt.subplots_adjust(left = 0.13, right = 0.93, top = 0.93, bottom = 0.13)

    cmap = mpl.cm.jet
    norm = mpl.colors.LogNorm()
    plt.scatter(x[idc], z[idc], s = 2, c = mass[idc], marker = 'o', \
     cmap = cmap, norm = norm, vmin = 1e3, vmax = 1e7, edgecolors = 'none')

    ax.xaxis.set_major_locator(majorLocator)
    ax.xaxis.set_minor_locator(minorLocator)
    ax.yaxis.set_major_locator(majorLocator)
    ax.yaxis.set_minor_locator(minorLocator)

    cb = plt.colorbar(ticks=ticker.LogLocator(base=10.0))
    cb.set_label('Cold Cloud Mass [M$_\odot$]')

    plt.xlim(-size, size)
    plt.ylim(-size, size)

    ################### dm_star ####################################

    ax = fig.add_subplot(224, aspect='equal')
    ax.set_anchor('W')
    #	ax = fig.add_axes([x4, y4, width, height])

    arr = np.sort(rarr, order='mass')

    x = arr['pos'][:, 0]
    y = arr['pos'][:, 1]
    z = arr['pos'][:, 2]

    mass = arr['mass'][:]

    idw = np.where(arr['type'] == mp.TYPE_WARM)
    idc = np.where(arr['type'] == mp.TYPE_COLD)
    ids = np.where(arr['type'] == mp.TYPE_STAR_PARAL)
    idm = np.where(arr['type'] == mp.TYPE_DM_PARAL)

    #	if np.size(idc) == 0:
    #		return

    plt.xlabel('X [kpc]')
    #	plt.ylabel('Z [kpc]')
    #	plt.subplots_adjust(left = 0.13, right = 0.93, top = 0.93, bottom = 0.13)

    plt.scatter(x[idm], z[idm], s = 1, c = 'k', marker = 'o', \
     edgecolors = 'none')
    if (np.size(ids) > 0):
        plt.scatter(x[ids], z[ids], s = 2, c = 'r', marker = 'o', \
         edgecolors = 'none')

    ax.xaxis.set_major_locator(majorLocator)
    ax.xaxis.set_minor_locator(minorLocator)
    ax.yaxis.set_major_locator(majorLocator)
    ax.yaxis.set_minor_locator(minorLocator)

    plt.xlim(-size, size)
    plt.ylim(-size, size)

    ########################## save ######################################

    print 'writing xz...'
    figure_name = 'Panel-xz-' + dir_name + '-' + base_name + '-' \
        + snap_num + '.png'
    plt.savefig(figure_name)

    ######################################################################
    ################################## X Y ###############################
    ######################################################################

    plt.clf()

    fig = plt.figure()
    fig.set_figwidth(10)
    fig.set_figheight(8.05)
    fig.subplots_adjust(left=0.08, right=0.96, top=0.95, bottom=0.06)
    plt.figtext(0.5, 0.97, title_name, ha='center', size='large')

    ################### snap_den ####################################

    ax = fig.add_subplot(221)

    arr = np.sort(rarr, order='den')

    x = arr['pos'][:, 0]
    y = arr['pos'][:, 1]
    z = arr['pos'][:, 2]

    den = arr['den'][:]

    idw = np.where(arr['type'] == mp.TYPE_WARM)
    idc = np.where(arr['type'] == mp.TYPE_COLD)
    ids = np.where(arr['type'] == mp.TYPE_STAR_PARAL)

    width, height = rcParams['figure.figsize']
    sz = min(width, height)

    #	plt.xlabel('X [kpc]')
    plt.ylabel('Y [kpc]')
    cmap = mpl.cm.jet
    norm = mpl.colors.LogNorm()
    plt.scatter(x[idw], y[idw], s = 1, c = den[idw], marker = 'o', \
     cmap = cmap, norm = norm, vmin = 1e-7, vmax = 10, edgecolors = 'none')

    ax.xaxis.set_major_locator(majorLocator)
    ax.xaxis.set_minor_locator(minorLocator)
    ax.yaxis.set_major_locator(majorLocator)
    ax.yaxis.set_minor_locator(minorLocator)

    cb = plt.colorbar(ticks=ticker.LogLocator(base=10.0))
    cb.set_label('Density [cm$^{-3}$]')

    plt.xlim(-size, size)
    plt.ylim(-size, size)

    ######################## gen_snap_T ####################################
    ax = fig.add_subplot(222)
    ax.apply_aspect()

    pos = ax.get_position().get_points()
    x4 = pos[0][0]
    width = pos[1][0] - pos[0][0]
    height = pos[1][1] - pos[0][1]

    arr = np.sort(rarr, order='T')
    arr = arr[::-1]

    x = arr['pos'][:, 0]
    y = arr['pos'][:, 1]
    z = arr['pos'][:, 2]

    T = arr['T'][:]

    idw = np.where(arr['type'] == mp.TYPE_WARM)
    idc = np.where(arr['type'] == mp.TYPE_COLD)
    ids = np.where(arr['type'] == mp.TYPE_STAR_PARAL)

    #	plt.xlabel('X [kpc]')
    #	plt.ylabel('Z [kpc]')

    cmap = mpl.cm.jet
    norm = mpl.colors.LogNorm()
    plt.scatter(x[idw], y[idw], s = 1, c = T[idw], marker = 'o', cmap = cmap, \
     norm = norm, vmin = 1e3, vmax = 1e7, edgecolors = 'none')

    ax.xaxis.set_major_locator(majorLocator)
    ax.xaxis.set_minor_locator(minorLocator)
    ax.yaxis.set_major_locator(majorLocator)
    ax.yaxis.set_minor_locator(minorLocator)

    cb = plt.colorbar(ticks=ticker.LogLocator(base=10.0))
    cb.set_label('Temperature [K]')

    plt.xlim(-size, size)
    plt.ylim(-size, size)

    ################### gen_snap_cold_mass ####################################

    ax = fig.add_subplot(223)
    ax.apply_aspect()
    pos = ax.get_position().get_points()
    y4 = pos[0][1]

    arr = np.sort(rarr, order='mass')
    #	arr = rarr

    x = arr['pos'][:, 0]
    y = arr['pos'][:, 1]
    z = arr['pos'][:, 2]

    mass = arr['mass'][:]

    idw = np.where(arr['type'] == mp.TYPE_WARM)
    idc = np.where(arr['type'] == mp.TYPE_COLD)
    ids = np.where(arr['type'] == mp.TYPE_STAR_PARAL)

    if np.size(idc) == 0:
        return

    plt.xlabel('X [kpc]')
    plt.ylabel('Y [kpc]')
    #	plt.subplots_adjust(left = 0.13, right = 0.93, top = 0.93, bottom = 0.13)

    cmap = mpl.cm.jet
    norm = mpl.colors.LogNorm()
    plt.scatter(x[idc], y[idc], s = 2, c = mass[idc], marker = 'o', \
     cmap = cmap, norm = norm, vmin = 1e3, vmax = 1e7, edgecolors = 'none')

    ax.xaxis.set_major_locator(majorLocator)
    ax.xaxis.set_minor_locator(minorLocator)
    ax.yaxis.set_major_locator(majorLocator)
    ax.yaxis.set_minor_locator(minorLocator)

    cb = plt.colorbar(ticks=ticker.LogLocator(base=10.0))
    cb.set_label('Cold Cloud Mass [M$_\odot$]')

    plt.xlim(-size, size)
    plt.ylim(-size, size)

    ################### dm_star ####################################

    ax = fig.add_subplot(224, aspect='equal')
    ax.set_anchor('W')
    #	ax = fig.add_axes([x4, y4, width, height])

    arr = np.sort(rarr, order='mass')

    x = arr['pos'][:, 0]
    y = arr['pos'][:, 1]
    z = arr['pos'][:, 2]

    mass = arr['mass'][:]

    idw = np.where(arr['type'] == mp.TYPE_WARM)
    idc = np.where(arr['type'] == mp.TYPE_COLD)
    ids = np.where(arr['type'] == mp.TYPE_STAR_PARAL)
    idm = np.where(arr['type'] == mp.TYPE_DM_PARAL)

    #	if np.size(idc) == 0:
    #		return

    plt.xlabel('X [kpc]')
    #	plt.ylabel('Z [kpc]')
    #	plt.subplots_adjust(left = 0.13, right = 0.93, top = 0.93, bottom = 0.13)

    plt.scatter(x[idm], y[idm], s = 1, c = 'k', marker = 'o', \
     edgecolors = 'none')
    if (np.size(ids) > 0):
        plt.scatter(x[ids], y[ids], s = 2, c = 'r', marker = 'o', \
         edgecolors = 'none')

    ax.xaxis.set_major_locator(majorLocator)
    ax.xaxis.set_minor_locator(minorLocator)
    ax.yaxis.set_major_locator(majorLocator)
    ax.yaxis.set_minor_locator(minorLocator)

    plt.xlim(-size, size)
    plt.ylim(-size, size)

    ########################## save ######################################

    figure_name = 'Panel-xy-' + dir_name + '-' + base_name + '-' \
        + snap_num + '.png'
    plt.savefig(figure_name)
Example #4
0
def multi_T(dir_name, base_name, nproc, size, snap_num):

    title = dir_name

    rc('font', size=18)
    fig = plt.figure()
    fig.set_figwidth(10)
    fig.set_figheight(9)
    fig.subplots_adjust(left = 0.10, right = 0.85, top = 0.95, bottom = 0.10, \
                        wspace = 0.0, hspace = 0.0)

    #    plt.figtext(0.5, 0.94, title, ha = 'center', size = 'large')

    majorLocator = ticker.MultipleLocator(20)
    minorLocator = ticker.MultipleLocator(4)

    nullFormatter = ticker.NullFormatter()

    cmap = mpl.cm.jet
    norm = mpl.colors.LogNorm()

    vmin = 1.0E3
    vmax = 1.0E7

    #######################################################################
    ########################### X - Z ####################################
    #######################################################################

    rc('font', size=18)
    plt.clf()
    fig = plt.figure()
    fig.set_figwidth(10)
    fig.set_figheight(9)
    fig.subplots_adjust(left = 0.10, right = 0.85, top = 0.95, bottom = 0.10, \
                        wspace = 0.0, hspace = 0.0)

    #    plt.figtext(0.5, 0.94, title, ha = 'center', size = 'large')

    ############################### snap 0 ####################################

    ntot, time, rarr = mp.read_snap_paral(mp.prefix, dir_name, base_name,
                                          snap_num[0], nproc)

    ax = fig.add_subplot(221)

    arr = np.sort(rarr, order='T')
    arr = arr[::-1]

    x = arr['pos'][:, 0]
    y = arr['pos'][:, 1]
    z = arr['pos'][:, 2]

    type = arr['type'][:]
    r = np.sqrt(x * x + y * y + z * z)

    T = arr['T'][:]

    boolarr = np.logical_and(type == mp.TYPE_WARM, r < 50.0)
    #    boolarr = np.logical_and(boolarr, np.abs(z) < 1.0)
    idw = np.where(boolarr)
    boolarr = np.logical_and(type == mp.TYPE_COLD, r < 50.0)
    idc = np.where(boolarr)
    boolarr = np.logical_and(type == mp.TYPE_STAR_PARAL, r < 50.0)
    ids = np.where(boolarr)

    width, height = rcParams['figure.figsize']
    sz = min(width, height)

    #   plt.xlabel('X [kpc]')
    plt.ylabel('Z [kpc]')
    plt.scatter(x[idw], z[idw], s = 1, c = T[idw], marker = 'o', \
        cmap = cmap, norm = norm, vmin = vmin, vmax = vmax, edgecolors = 'none')

    ax.xaxis.set_major_locator(majorLocator)
    ax.xaxis.set_minor_locator(minorLocator)
    ax.yaxis.set_major_locator(majorLocator)
    ax.yaxis.set_minor_locator(minorLocator)

    ax.xaxis.set_major_formatter(nullFormatter)
    #    ax.yaxis.set_major_formatter(nullFormatter)

    plt.xlim(-size, size * 0.99)
    plt.ylim(-size, size)

    ################################# snap 1 ####################################
    ntot, time, rarr = mp.read_snap_paral(mp.prefix, dir_name, base_name,
                                          snap_num[1], nproc)

    ax = fig.add_subplot(222)

    arr = np.sort(rarr, order='T')
    arr = arr[::-1]

    x = arr['pos'][:, 0]
    y = arr['pos'][:, 1]
    z = arr['pos'][:, 2]

    type = arr['type'][:]
    r = np.sqrt(x * x + y * y + z * z)

    T = arr['T'][:]

    boolarr = np.logical_and(type == mp.TYPE_WARM, r < 50.0)
    #    boolarr = np.logical_and(boolarr, np.abs(z) < 1.0)
    idw = np.where(boolarr)
    boolarr = np.logical_and(type == mp.TYPE_COLD, r < 50.0)
    idc = np.where(boolarr)
    boolarr = np.logical_and(type == mp.TYPE_STAR_PARAL, r < 50.0)
    ids = np.where(boolarr)

    width, height = rcParams['figure.figsize']
    sz = min(width, height)

    #   plt.xlabel('X [kpc]')
    #   plt.ylabel('Z [kpc]')
    plt.scatter(x[idw], z[idw], s = 1, c = T[idw], marker = 'o', \
        cmap = cmap, norm = norm, vmin = vmin, vmax = vmax, edgecolors = 'none')

    ax.xaxis.set_major_locator(majorLocator)
    ax.xaxis.set_minor_locator(minorLocator)
    ax.yaxis.set_major_locator(majorLocator)
    ax.yaxis.set_minor_locator(minorLocator)

    ax.xaxis.set_major_formatter(nullFormatter)
    ax.yaxis.set_major_formatter(nullFormatter)

    plt.xlim(-size, size * 0.99)
    plt.ylim(-size, size)

    ################################# snap 2 ####################################
    ntot, time, rarr = mp.read_snap_paral(mp.prefix, dir_name, base_name,
                                          snap_num[2], nproc)

    ax = fig.add_subplot(223)

    arr = np.sort(rarr, order='T')
    arr = arr[::-1]

    x = arr['pos'][:, 0]
    y = arr['pos'][:, 1]
    z = arr['pos'][:, 2]

    type = arr['type'][:]
    r = np.sqrt(x * x + y * y + z * z)

    T = arr['T'][:]

    boolarr = np.logical_and(type == mp.TYPE_WARM, r < 50.0)
    #    boolarr = np.logical_and(boolarr, np.abs(z) < 1.0)
    idw = np.where(boolarr)
    boolarr = np.logical_and(type == mp.TYPE_COLD, r < 50.0)
    idc = np.where(boolarr)
    boolarr = np.logical_and(type == mp.TYPE_STAR_PARAL, r < 50.0)
    ids = np.where(boolarr)

    width, height = rcParams['figure.figsize']
    sz = min(width, height)

    plt.xlabel('X [kpc]')
    plt.ylabel('Z [kpc]')
    plt.scatter(x[idw], z[idw], s = 1, c = T[idw], marker = 'o', \
        cmap = cmap, norm = norm, vmin = vmin, vmax = vmax, edgecolors = 'none')

    ax.xaxis.set_major_locator(majorLocator)
    ax.xaxis.set_minor_locator(minorLocator)
    ax.yaxis.set_major_locator(majorLocator)
    ax.yaxis.set_minor_locator(minorLocator)

    #    ax.xaxis.set_major_formatter(nullFormatter)
    #    ax.yaxis.set_major_formatter(nullFormatter)

    plt.xlim(-size, size * 0.99)
    plt.ylim(-size, size)

    ################################ snap 3 ####################################
    ntot, time, rarr = mp.read_snap_paral(mp.prefix, dir_name, base_name,
                                          snap_num[3], nproc)

    ax = fig.add_subplot(224)

    arr = np.sort(rarr, order='T')
    arr = arr[::-1]

    x = arr['pos'][:, 0]
    y = arr['pos'][:, 1]
    z = arr['pos'][:, 2]

    type = arr['type'][:]
    r = np.sqrt(x * x + y * y + z * z)

    T = arr['T'][:]

    boolarr = np.logical_and(type == mp.TYPE_WARM, r < 50.0)
    #    boolarr = np.logical_and(boolarr, np.abs(z) < 1.0)
    idw = np.where(boolarr)
    boolarr = np.logical_and(type == mp.TYPE_COLD, r < 50.0)
    idc = np.where(boolarr)
    boolarr = np.logical_and(type == mp.TYPE_STAR_PARAL, r < 50.0)
    ids = np.where(boolarr)

    width, height = rcParams['figure.figsize']
    sz = min(width, height)

    plt.xlabel('X [kpc]')
    #   plt.ylabel('Z [kpc]')
    plt.scatter(x[idw], z[idw], s = 1, c = T[idw], marker = 'o', \
        cmap = cmap, norm = norm, vmin = vmin, vmax = vmax, edgecolors = 'none')

    ax.xaxis.set_major_locator(majorLocator)
    ax.xaxis.set_minor_locator(minorLocator)
    ax.yaxis.set_major_locator(majorLocator)
    ax.yaxis.set_minor_locator(minorLocator)

    #    ax.xaxis.set_major_formatter(nullFormatter)
    ax.yaxis.set_major_formatter(nullFormatter)

    plt.xlim(-size, size * 0.99)
    plt.ylim(-size, size)

    ######################### color bar ##################################
    # [xcoord, ycoord, width, height]
    cbaxes = fig.add_axes([0.87, 0.10, 0.03, 0.85])
    cb = plt.colorbar(orientation='vertical', \
        ticks = ticker.LogLocator(base = 10.0), cax = cbaxes)
    cb.set_label('Temperature [K]')

    ######################## label ######################################
    label = 't = 0.5 Gyr'
    plt.figtext(0.28, 0.9, label, ha='center', size=20)

    label = 't = 1 Gyr'
    plt.figtext(0.68, 0.9, label, ha='center', size=20)

    label = 't = 2 Gyr'
    plt.figtext(0.28, 0.47, label, ha='center', size=20)

    label = 't = 3 Gyr'
    plt.figtext(0.68, 0.47, label, ha='center', size=20)

    ########################## save ######################################

    figure_name = 'TPanel-xz-' + dir_name + '.png'
    plt.savefig(figure_name)

    #######################################################################
    ########################### X - Y ####################################
    #######################################################################

    rc('font', size=18)
    plt.clf()
    fig = plt.figure()
    fig.set_figwidth(10)
    fig.set_figheight(9)
    fig.subplots_adjust(left = 0.10, right = 0.85, top = 0.95, bottom = 0.10, \
                        wspace = 0.0, hspace = 0.0)

    #    plt.figtext(0.5, 0.94, title, ha = 'center', size = 'large')

    ############################### snap 0 ####################################

    ntot, time, rarr = mp.read_snap_paral(mp.prefix, dir_name, base_name,
                                          snap_num[0], nproc)

    ax = fig.add_subplot(221)

    arr = np.sort(rarr, order='T')
    arr = arr[::-1]

    x = arr['pos'][:, 0]
    y = arr['pos'][:, 1]
    z = arr['pos'][:, 2]

    type = arr['type'][:]
    r = np.sqrt(x * x + y * y + z * z)

    T = arr['T'][:]

    boolarr = np.logical_and(type == mp.TYPE_WARM, r < 50.0)
    #    boolarr = np.logical_and(boolarr, np.abs(z) < 1.0)
    idw = np.where(boolarr)
    boolarr = np.logical_and(type == mp.TYPE_COLD, r < 50.0)
    idc = np.where(boolarr)
    boolarr = np.logical_and(type == mp.TYPE_STAR_PARAL, r < 50.0)
    ids = np.where(boolarr)

    width, height = rcParams['figure.figsize']
    sz = min(width, height)

    #   plt.xlabel('X [kpc]')
    plt.ylabel('Y [kpc]')
    plt.scatter(x[idw], y[idw], s = 1, c = T[idw], marker = 'o', \
        cmap = cmap, norm = norm, vmin = vmin, vmax = vmax, edgecolors = 'none')

    ax.xaxis.set_major_locator(majorLocator)
    ax.xaxis.set_minor_locator(minorLocator)
    ax.yaxis.set_major_locator(majorLocator)
    ax.yaxis.set_minor_locator(minorLocator)

    ax.xaxis.set_major_formatter(nullFormatter)
    #    ax.yaxis.set_major_formatter(nullFormatter)

    plt.xlim(-size, size * 0.99)
    plt.ylim(-size, size)

    ################################# snap 1 ####################################
    ntot, time, rarr = mp.read_snap_paral(mp.prefix, dir_name, base_name,
                                          snap_num[1], nproc)

    ax = fig.add_subplot(222)

    arr = np.sort(rarr, order='T')
    arr = arr[::-1]

    x = arr['pos'][:, 0]
    y = arr['pos'][:, 1]
    z = arr['pos'][:, 2]

    type = arr['type'][:]
    r = np.sqrt(x * x + y * y + z * z)

    T = arr['T'][:]

    boolarr = np.logical_and(type == mp.TYPE_WARM, r < 50.0)
    #    boolarr = np.logical_and(boolarr, np.abs(z) < 1.0)
    idw = np.where(boolarr)
    boolarr = np.logical_and(type == mp.TYPE_COLD, r < 50.0)
    idc = np.where(boolarr)
    boolarr = np.logical_and(type == mp.TYPE_STAR_PARAL, r < 50.0)
    ids = np.where(boolarr)

    width, height = rcParams['figure.figsize']
    sz = min(width, height)

    #   plt.xlabel('X [kpc]')
    #   plt.ylabel('Y [kpc]')
    plt.scatter(x[idw], y[idw], s = 1, c = T[idw], marker = 'o', \
        cmap = cmap, norm = norm, vmin = vmin, vmax = vmax, edgecolors = 'none')

    ax.xaxis.set_major_locator(majorLocator)
    ax.xaxis.set_minor_locator(minorLocator)
    ax.yaxis.set_major_locator(majorLocator)
    ax.yaxis.set_minor_locator(minorLocator)

    ax.xaxis.set_major_formatter(nullFormatter)
    ax.yaxis.set_major_formatter(nullFormatter)

    plt.xlim(-size, size * 0.99)
    plt.ylim(-size, size)

    ################################# snap 2 ####################################
    ntot, time, rarr = mp.read_snap_paral(mp.prefix, dir_name, base_name,
                                          snap_num[2], nproc)

    ax = fig.add_subplot(223)

    arr = np.sort(rarr, order='T')
    arr = arr[::-1]

    x = arr['pos'][:, 0]
    y = arr['pos'][:, 1]
    z = arr['pos'][:, 2]

    type = arr['type'][:]
    r = np.sqrt(x * x + y * y + z * z)

    T = arr['T'][:]

    boolarr = np.logical_and(type == mp.TYPE_WARM, r < 50.0)
    #    boolarr = np.logical_and(boolarr, np.abs(z) < 1.0)
    idw = np.where(boolarr)
    boolarr = np.logical_and(type == mp.TYPE_COLD, r < 50.0)
    idc = np.where(boolarr)
    boolarr = np.logical_and(type == mp.TYPE_STAR_PARAL, r < 50.0)
    ids = np.where(boolarr)

    width, height = rcParams['figure.figsize']
    sz = min(width, height)

    plt.xlabel('X [kpc]')
    plt.ylabel('Y [kpc]')
    plt.scatter(x[idw], y[idw], s = 1, c = T[idw], marker = 'o', \
        cmap = cmap, norm = norm, vmin = vmin, vmax = vmax, edgecolors = 'none')

    ax.xaxis.set_major_locator(majorLocator)
    ax.xaxis.set_minor_locator(minorLocator)
    ax.yaxis.set_major_locator(majorLocator)
    ax.yaxis.set_minor_locator(minorLocator)

    #    ax.xaxis.set_major_formatter(nullFormatter)
    #    ax.yaxis.set_major_formatter(nullFormatter)

    plt.xlim(-size, size * 0.99)
    plt.ylim(-size, size)

    ################################ snap 3 ####################################
    ntot, time, rarr = mp.read_snap_paral(mp.prefix, dir_name, base_name,
                                          snap_num[3], nproc)

    ax = fig.add_subplot(224)

    arr = np.sort(rarr, order='T')
    arr = arr[::-1]

    x = arr['pos'][:, 0]
    y = arr['pos'][:, 1]
    z = arr['pos'][:, 2]

    type = arr['type'][:]
    r = np.sqrt(x * x + y * y + z * z)

    T = arr['T'][:]

    boolarr = np.logical_and(type == mp.TYPE_WARM, r < 50.0)
    #    boolarr = np.logical_and(boolarr, np.abs(z) < 1.0)
    idw = np.where(boolarr)
    boolarr = np.logical_and(type == mp.TYPE_COLD, r < 50.0)
    idc = np.where(boolarr)
    boolarr = np.logical_and(type == mp.TYPE_STAR_PARAL, r < 50.0)
    ids = np.where(boolarr)

    width, height = rcParams['figure.figsize']
    sz = min(width, height)

    plt.xlabel('X [kpc]')
    #   plt.ylabel('Y [kpc]')
    plt.scatter(x[idw], y[idw], s = 1, c = T[idw], marker = 'o', \
        cmap = cmap, norm = norm, vmin = vmin, vmax = vmax, edgecolors = 'none')

    ax.xaxis.set_major_locator(majorLocator)
    ax.xaxis.set_minor_locator(minorLocator)
    ax.yaxis.set_major_locator(majorLocator)
    ax.yaxis.set_minor_locator(minorLocator)

    #    ax.xaxis.set_major_formatter(nullFormatter)
    ax.yaxis.set_major_formatter(nullFormatter)

    plt.xlim(-size, size * 0.99)
    plt.ylim(-size, size)

    ######################### color bar ##################################
    # [xcoord, ycoord, width, height]
    cbaxes = fig.add_axes([0.87, 0.10, 0.03, 0.85])
    cb = plt.colorbar(orientation='vertical', \
        ticks = ticker.LogLocator(base = 10.0), cax = cbaxes)
    cb.set_label('Temperature [K]')

    ######################## label ######################################
    label = 't = 0.5 Gyr'
    plt.figtext(0.28, 0.9, label, ha='center', size=20)

    label = 't = 1 Gyr'
    plt.figtext(0.68, 0.9, label, ha='center', size=20)

    label = 't = 2 Gyr'
    plt.figtext(0.28, 0.47, label, ha='center', size=20)

    label = 't = 3 Gyr'
    plt.figtext(0.68, 0.47, label, ha='center', size=20)

    ########################## save ######################################

    figure_name = 'TPanel-xy-' + dir_name + '.png'
    plt.savefig(figure_name)
Example #5
0
        exact  =  np.zeros((model.nt,model.nx))
        for k in range(0,model.nt):
            exact[k,:] = ufunc(model.dt*k,model.x,model.κ)


        error_kappas[j,i] = LA.norm(Strang_Beam_kap- exact,np.inf)


xx, yy = np.meshgrid(1/nxs,kappas)
Pe = 4*xx/yy

from matplotlib import ticker, cm

fig, ax = plt.subplots(1, 2, sharex=True, sharey=True, figsize=(17, 8))

pes = ax[0].contourf(1/nxs,kappas,Pe,levels = np.logspace(-3,1,9), locator=ticker.LogLocator(), cmap=cm.PuBu_r)
cbar0 = fig.colorbar(pes, ax = ax[0])
cbar0.ax.set_title('$Pe$',fontsize='large', pad = 20)
ax[0].set_ylabel(r'$\kappa$',fontsize='xx-large')
ax[0].set_xlabel(r'$\Delta x$',fontsize='xx-large')
ax[0].set_title('Peclet Number',fontsize='large')

cs = ax[1].contourf(1/nxs,kappas,error_kappas, levels = np.logspace(-1,2,19), locator=ticker.LogLocator(), cmap=cm.viridis)
cbar1 = fig.colorbar(cs, ax = ax[1])
cbar1.ax.set_title('$||U - u||_\infty$',fontsize='large', pad = 20)
ax[1].set_xlabel(r'$\Delta x$',fontsize='xx-large')
ax[1].set_title('Error',fontsize='large')

plt.tight_layout()
Example #6
0
def performance(tol):
    """
    ============================================================================
    Assesses the performance of Bracket Descent and Scipy L-BFGS-B Methods
    ============================================================================

    Parameters
    ------------
    tol : float
        Determines the tolerance for minimization

    Returns
    ------------

    This function will produce 4 figures.
    The first 3 will represent a comparison of the precison of each method while
    the 4th will represent a comparison of the timing.
    The first three show the location of the computed minima for initial guesses
    of [-100,-3], [-50,-3], [-10,-3] and [-1,-3]. These are overlayed onto the
    original cost function; the Scipy L-BFGS-B results are represented by red
    diamonds while the Bracket Descent results are represented by blue diamonds.
    The three figures represent the cases when the noise amplitude is set to 0,
    1, and 10.

    The final figure consists of four subplots, the upper row represents the
    computational time taken for convergence, given an initial x starting point,
    while the lower represents the number of iterations requried. In each case
    the Scipy L-BFGS-B method is shown on the left and the Bracket descent is
    shown on the right. A legend on each plot differentiates the cases when the
    Noise Ampplitude is set to 0, 1, and 10.


    Trends Observed
    ----------------
    For all cases, the Scipy minimization function appears to be more consistent
    (to rely less on the initial guess) than the fortran Bracket Descent method.
    This is seen in figures hw241-hw243, where the B-D results are seen to cover
    a broader spead of final coordinated. These figures also illustrate that as
    the level of noise of the cost function is increased, the Scipy L-BFGS-B
    method becomes increasingly favourable over the Bracket descent approach,
    producing more precise results each time.
    This is a result of the lack of consideration for noise within the Bracket
    Descent method; that is to say that any random fluctations which result in
    two neighbouring points (along the convergence path) lying within the
    tolerance limit will be assumed to be the true minimum of the function as
    defined by the B-D method. However, it is likely that the Scipy L-BFGS-B
    method is adapted to smooth out noisy functions and hence find the true
    minimum more reliably.

    A consideration of figure hw244, however, demonstrates an advantage of the
    B-D method over the Scipy L-BGFS-B minimization in the form of timing. It can
    be seen that despite requiring more iterations before converging to within a
    set tolerance, the total computational time is less to within a factor of 10.



    """
    plt.close('all')

    count = 0
    hw2.tol = tol
    nintb = []
    nintl = []
    tlbfgsb = []
    txfbd = []
    lbfgsx = []
    lbfgsy = []
    xfbdx = []
    xfbdy = []
    cost.c_noise = True

    for cost.c_noise_amp in [0., 1., 10.]:
        count = count + 1

        for [x, y] in [[-100., -3.], [-50., -3.], [-10., -3.], [-1., -3.]]:
            t12 = 0
            t34 = 0
            for i in range(0, 1000):
                t1 = time()
                scipy.optimize.minimize(cost.costj, [x, y],
                                        method='L-BFGS-B',
                                        tol=tol)
                t2 = time()
                t12 = t12 + (t2 - t1)

                t3 = time()
                hw2.bracket_descent([x, y])
                t4 = time()
                t34 = t34 + (t4 - t3)

            tlbfgsb.append(t12 / 1000)
            txfbd.append(t34 / 1000)
            info = scipy.optimize.minimize(cost.costj, [x, y],
                                           method='L-BFGS-B',
                                           tol=tol)
            xfbd, jfbd, i2 = hw2.bracket_descent([x, y])

            # print('method:              ', 'Fortran Bracket Descent')
            # print('Value:               ', jfbd)
            # print('number of iterations:', i2)
            # print('x:                   ', xfbd)
            # print('c_noise:             ', cost.c_noise)
            # print('   ')
            #print(info)

            x = info.x
            lbfgsx.append(x[0])
            lbfgsy.append(x[1])
            xfbdx.append(xfbd[0])
            xfbdy.append(xfbd[1])

            nint = info.nit
            nintl.append(nint)
            nintb.append(i2)

        Minx = 1 + (min([
            min(xfbdx[(count - 1) * 4:count * 4]),
            min(lbfgsx[(count - 1) * 4:count * 4])
        ]) - 1) * 1.1
        Maxx = 1 + (max([
            max(xfbdx[(count - 1) * 4:count * 4]),
            max(lbfgsx[(count - 1) * 4:count * 4])
        ]) - 1) * 1.1
        Miny = 1 + (min([
            min(xfbdy[(count - 1) * 4:count * 4]),
            min(lbfgsy[(count - 1) * 4:count * 4])
        ]) - 1) * 1.1
        Maxy = 1 + (max([
            max(xfbdy[(count - 1) * 4:count * 4]),
            max(lbfgsy[(count - 1) * 4:count * 4])
        ]) - 1) * 1.1
        [X, Y] = np.linspace(Minx, Maxx, 200), np.linspace(Miny, Maxy, 200)
        #calculate noiseless cost function at each point on 2D grid
        j = [[cost.costj([xi, yi]) for xi in X] for yi in Y]
        #create contour plots of cost functions with and without noise
        fig, p4 = plt.subplots()
        cp = p4.contourf(X, Y, j, locator=ticker.LogLocator(), cmap=cm.GnBu)
        cbar = fig.colorbar(cp)
        BD, = p4.plot(xfbdx[(count - 1) * 4:count * 4],
                      xfbdy[(count - 1) * 4:count * 4],
                      'b',
                      linestyle='None',
                      marker='d',
                      markersize=6)
        Scipy, = p4.plot(lbfgsx[(count - 1) * 4:count * 4],
                         lbfgsy[(count - 1) * 4:count * 4],
                         'r',
                         linestyle='None',
                         marker='d',
                         markersize=6)
        BD.set_label('Fortran Bracket Descent')
        Scipy.set_label('Scipy optimize L-BFGS-B')
        plt.legend(loc='upper left', fontsize='small')
        plt.suptitle(
            'Rosemary Teague, performance \n Comparison of converged values, Noise='
            + str(int(cost.c_noise_amp)))
        #plt.tight_layout(pad=5)
        plt.savefig('hw24' + str(count), dpi=700)
        print(tlbfgsb)

    plt.close('all')
    f4, (p414, p424) = plt.subplots(2, 2, sharey=True)
    one, = p414[0].plot(
        tlbfgsb[:4],
        [np.abs(-100.), np.abs(-50.),
         np.abs(-10.), np.abs(-1.)],
        'r',
        marker='x',
        markersize=12)
    two, = p414[0].plot(
        tlbfgsb[4:8],
        [np.abs(-100.), np.abs(-50.),
         np.abs(-10.), np.abs(-1.)],
        'm',
        marker='x',
        markersize=12)
    three, = p414[0].plot(
        tlbfgsb[8:],
        [np.abs(-100.), np.abs(-50.),
         np.abs(-10.), np.abs(-1.)],
        '#c79fef',
        marker='x',
        markersize=12)
    one.set_label('No Noise')
    two.set_label('Noise = 1.0')
    three.set_label('Noise = 10.0')
    p414[0].set_title('Scipy Optimise L-BFGS-B')
    p414[0].set_xlabel('Time Taken')
    p414[0].legend(loc='upper right', fontsize='x-small')
    p414[0].xaxis.set_ticks(np.linspace(min(tlbfgsb), max(tlbfgsb), 3))
    p414[0].ticklabel_format(useOffset=False)
    uno, = p414[1].plot(txfbd[:4], [
        np.abs(-100. - xfbdx[0]),
        np.abs(-50. - xfbdx[1]),
        np.abs(-10. - xfbdx[2]),
        np.abs(-1. - xfbdx[3])
    ],
                        'b',
                        marker='x',
                        markersize=12)
    dos, = p414[1].plot(txfbd[4:8], [
        np.abs(-100. - xfbdx[4]),
        np.abs(-50. - xfbdx[5]),
        np.abs(-10. - xfbdx[6]),
        np.abs(-1. - xfbdx[7])
    ],
                        'g',
                        marker='x',
                        markersize=12)
    tres, = p414[1].plot(txfbd[8:], [
        np.abs(-100. - xfbdx[8]),
        np.abs(-50. - xfbdx[9]),
        np.abs(-10. - xfbdx[10]),
        np.abs(-1. - xfbdx[11])
    ],
                         'c',
                         marker='x',
                         markersize=12)
    uno.set_label('No Noise')
    dos.set_label('Noise = 1.0')
    tres.set_label('Noise = 10.0')
    p414[1].set_title('Fortran Bracket Descent')
    p414[1].set_xlabel('Time Taken')
    p414[1].legend(loc='upper left', fontsize='x-small')
    p414[1].xaxis.set_ticks(np.linspace(min(txfbd), max(txfbd), 3))
    one1, = p424[0].plot(nintl[:4], [
        np.abs(-100. - lbfgsx[0]),
        np.abs(-50. - lbfgsx[1]),
        np.abs(-10. - lbfgsx[2]),
        np.abs(-1. - lbfgsx[3])
    ],
                         'r',
                         marker='x',
                         markersize=12)
    two2, = p424[0].plot(nintl[4:8], [
        np.abs(-100. - lbfgsx[4]),
        np.abs(-50. - lbfgsx[5]),
        np.abs(-10. - lbfgsx[6]),
        np.abs(-1. - lbfgsx[7])
    ],
                         'm',
                         marker='x',
                         markersize=12)
    three3, = p424[0].plot(nintl[8:], [
        np.abs(-100. - lbfgsx[8]),
        np.abs(-50. - lbfgsx[9]),
        np.abs(-10. - lbfgsx[10]),
        np.abs(-1. - lbfgsx[11])
    ],
                           '#c79fef',
                           marker='x',
                           markersize=12)
    one1.set_label('No Noise')
    two2.set_label('Noise = 1.0')
    three3.set_label('Noise = 10.0')
    p424[0].set_xlabel('Number of Iterations')
    p424[0].legend(loc='upper left', fontsize='x-small')
    p424[0].ticklabel_format(useOffset=False)
    uno1, = p424[1].plot(nintb[:4], [
        np.abs(-100. - xfbdx[0]),
        np.abs(-50. - xfbdx[1]),
        np.abs(-10. - xfbdx[2]),
        np.abs(-1. - xfbdx[3])
    ],
                         'b',
                         marker='x',
                         markersize=12)
    dos2, = p424[1].plot(nintb[4:8], [
        np.abs(-100. - xfbdx[4]),
        np.abs(-50. - xfbdx[5]),
        np.abs(-10. - xfbdx[6]),
        np.abs(-1. - xfbdx[7])
    ],
                         'g',
                         marker='x',
                         markersize=12)
    tres3, = p424[1].plot(nintb[8:], [
        np.abs(-100. - xfbdx[8]),
        np.abs(-50. - xfbdx[9]),
        np.abs(-10. - xfbdx[10]),
        np.abs(-1. - xfbdx[11])
    ],
                          'c',
                          marker='x',
                          markersize=12)
    uno1.set_label('No Noise')
    dos2.set_label('Noise = 1.0')
    tres3.set_label('Noise = 10.0')
    p424[1].set_xlabel('Number of Iterations')
    p424[1].legend(loc='upper left', fontsize='x-small')
    f4.text(0.04,
            0.5,
            'Initial x-distance from Converged minimum',
            va='center',
            rotation='vertical')
    plt.suptitle(
        'Rosemary Teague, performance \n Time taken for values to converge',
        fontsize='large')
    plt.tight_layout(pad=3.5, h_pad=1, w_pad=1)
    plt.savefig('hw244', dpi=700)
Example #7
0


		f = figure(figsize =(3.2,2.5), dpi = 220*2.0/3.0 * 2.0)
		N, K = meshgrid(nlist, klist, indexing = 'ij')

		ylabel('k', fontsize = 10)
		xlabel('n',fontsize = 10)
		title('$\lambda$ = %i nm' % lamda)
		minorticks_on()
		gca().tick_params(axis='both', which='major', labelsize=10)

		if use_logscale:

			cf_levels  = compute_outer_log_levels(error_map, base10delta = 0.1)
			CF = contourf(N,K, error_map,  norm = LogNorm(), levels = cf_levels , locator=ticker.LogLocator() )
			cbar = colorbar(CF, ticks = compute_inner_log_levels(error_map, base10delta = 0.2))
			cbar.ax.set_ylabel('RMS Error (%)')
			#cbar.ax.yaxis.set_ticks(log10(cf_levels) , minor=True)
		else:
			cf_level_delta = 0.5
			error_min = error_map.min()
			error_max = error_map.max()
			cfmax = (error_max - error_min) *0.15 +error_min
			cf_levels = arange( floor(error_min), ceil(cfmax) ,cf_level_delta  )

			CF = contourf(N,K, error_map, levels = cf_levels )
			cbar = colorbar(CF)
			cbar.ax.set_ylabel('RMS Error (%)')

		min_indices = find_min_indices_2d_array(error_map)
Example #8
0
#****************************************
#Plot Number 1  (start)
#****************************************

fig1, ax1 = plt.subplots(2, 1, sharex=True)

plt.xlabel('$P/P_{sat}$', fontname="Arial", fontsize=axis_Label_font_size)
plt.ylabel('        $\u03BE$ (No. waters / nm$^2$)',
           fontname="Arial",
           fontsize=axis_Label_font_size)

ax1[0].set_xticks(np.arange(0, 100, 10))
ax1[1].set_xticks(np.arange(0, 100, 10))
ax1[0].set_yticks(np.arange(-200, 200, E_per_nm_sq_10A_step))
ax1[1].set_yticks(np.arange(-200, 200, E_per_nm_sq_16A_step))
ax1[0].xaxis.set_major_locator(ticker.LogLocator(base=10.0, numticks=5))
ax1[1].xaxis.set_major_locator(ticker.LogLocator(base=10.0, numticks=5))

WSU_color = '#ff7f0e'
NDU_color = '#1f77b4'

ax1[0].errorbar(P_div_Po_10A_ads_Cass_list,
                Avg_of_E_per_area_10A_ads_Cass_list,
                Std_Dev_E_per_area_10A_ads_Cass_list,
                color=NDU_color,
                marker='D',
                linestyle='-',
                markersize=PointSizes + 2,
                linewidth=ConnectionLineSizes,
                fillstyle='full',
                label="Cassandra - adsorb",
Example #9
0
def psd_plot(pore_widths,
             pore_dist,
             method=None,
             labeldiff='distribution',
             labelcum='cumulative',
             line_style=None,
             log=True,
             right=None,
             left=None,
             ax=None):
    """
    Draw a pore size distribution plot.

    Parameters
    ----------
    pore_widths : array
        Array of the pore radii which will become the x axis.
    pore_dist : array
        Contribution of each pore radius which will make up the y axis.
    method : str
        The method used. Will be a string part of the title.
    labeldiff : str
        The label for the plotted data, which will appear in the legend.
    labelcum : str, optional
        The label for the cumulative data, which will appear in the legend.
        Set to None to remove cumulative distribution
    line_style : dict, optional
        The style dictionary to send to the plot() function.
    log : int
        Whether to display a logarithmic graph.
    right : int
        Higher bound of the selected pore widths.
    right : int
        Lower bound of the selected pore widths.
    ax : matplotlib axes object, default None
        The axes object where to plot the graph if a new figure is
        not desired.

    Returns
    -------
    matplotlib.axes
        Matplotlib axes of the graph generated. The user can then apply their
        own styling if desired.

    """
    # Generate the figure if needed
    if ax is None:
        fig = plt.figure(figsize=(15, 5))
        ax = fig.add_subplot(111)

    lst = {'marker': '', 'color': 'k'}
    if line_style is not None:
        lst.update(line_style)

    l1 = ax.plot(pore_widths, pore_dist, label=labeldiff, **lst)
    if labelcum:
        ax2 = ax.twinx()
        l2 = ax2.plot(pore_widths[1:],
                      numpy.cumsum(pore_dist[1:] * numpy.diff(pore_widths)),
                      marker='',
                      color='r',
                      linestyle="--",
                      label=labelcum)

    # Func formatter

    def formatter(x, pos):
        return "{0:g}".format(x)

    if log:
        ax.set_xscale('log')
        ax.xaxis.set_minor_formatter(ticker.FuncFormatter(formatter))
        ax.xaxis.set_major_formatter(ticker.FuncFormatter(formatter))
        ax.xaxis.set_major_locator(
            ticker.LogLocator(base=10.0, numticks=15, numdecs=20))
        ax.tick_params(axis='x',
                       which='minor',
                       width=0.75,
                       length=2.5,
                       **TICK_STYLE)
        ax.tick_params(axis='x',
                       which='major',
                       width=2,
                       length=10,
                       **TICK_STYLE)
        ax.set_xlim(left=left, right=right)
    else:
        if not left:
            left = 0
        ax.set_xlim(left=left, right=right)
        ax.tick_params(axis='both', which='major', **TICK_STYLE)

    ax.set_title("PSD plot " + str(method), **TITLE_STYLE)
    ax.set_xlabel('Pore width (nm)', **LABEL_STYLE)
    ax.set_ylabel('Distribution (dV/dw)', **LABEL_STYLE)
    if labelcum:
        ax2.set_ylabel('Cumulative Vol ($cm^3 g^{-1}$)', **LABEL_STYLE)

    lns = l1
    if labelcum:
        lns = l1 + l2
    labs = [l.get_label() for l in lns]
    ax.legend(lns, labs, loc='lower right')
    ax.set_ylim(bottom=0)
    if labelcum:
        ax2.set_ylim(bottom=0)
    ax.grid(True)

    return ax
Example #10
0
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import ticker, cm

R = 1 + 0.3j
L = -2 - 0.1j


def y(omega, p, R=R, L=L):
    return omega * (R * (1 + p) + L * (1 - p))


ps = np.linspace(0, 1.)
omegas = np.logspace(-1, 1)

omegabar = 1
pbar = 1.


def chisquare(omega, p):
    return abs(y(omega, p) - y(omegabar, pbar))**2


O, P = np.meshgrid(omegas, ps)

cs = plt.contourf(O, P, chisquare(O, P), locator=ticker.LogLocator(numticks=9))
plt.colorbar(cs)
plt.xscale('log')
# %%
Example #11
0
            
            coeffs.write_file("/tmp/REXI_"+rexi_method+"_"+unique_id_string+"_txt.txt", False)
            coeffs.write_file("/tmp/REXI_"+rexi_method+"_"+unique_id_string+"_bin.txt", True)

    #Save last names used
    met_names[imet]=unique_id_string


fig, axes = plt.subplots(m_met,2, figsize=(12,12))

plt.suptitle(r'$e^{ix}$'+" reconstruction error")
levels = np.geomspace(1e-16, 1, num=17)
cmap=cm.viridis

X, Y = np.meshgrid(x_points, K_tests )
axes1d=axes.reshape(-1)
for i, rexi_method in enumerate(rexi_methods):
    cs = axes1d[i].contourf(X, Y, errors[i], levels, locator=ticker.LogLocator(), cmap=cmap)
    axes1d[i].set(xlabel="x", ylabel="Poles", title=str(met_names[i]))    

fig.tight_layout(pad=4.0)
fig.subplots_adjust(right=0.8)
fig.subplots_adjust(top=0.9)
cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])
cbar=fig.colorbar(cs, cax=cbar_ax)
cbar.set_label('Error in exp(ix)')
plt.figtext(0.3,0.01, "lambda_include_imag="+str(lambda_include_imag)+" lambda_max_real="+str(lambda_max_real) )
plt.savefig("expi_recon.png")

plt.show()
Example #12
0
def test_bad_locator_subs(sub):
    ll = mticker.LogLocator()
    with pytest.raises(ValueError):
        ll.subs(sub)
for i in range(times_reduced_gp3.shape[0]):
    parallel_efficiency_gp3[i] = times_reduced_gp3[0]/(times_reduced_gp3[i]*nprocs[i])

# -- We prepare the plot area.
bar_width = 1e-1                          # Width of the bars in the bar plot.

fig = plt.figure(figsize=(4,2.5))
ax = fig.add_subplot(111)
vphys.adjust_spines(ax, ['left', 'bottom'], 2)
#ax.spines['bottom'].set_position(('outward',0.0))

ax.set_xlim(0.75,1.5*np.amax(nprocs))
ax.set_ylim(0,1.05)

ax.set_xscale('log')
ax.xaxis.set_major_locator(ticker.LogLocator(base=2))
ax.xaxis.set_major_formatter(ticker.StrMethodFormatter("{x:1.0f}"))
ax.yaxis.set_major_formatter(ticker.StrMethodFormatter("{x:1.1f}"))

ax.set_xticks(nprocs)
ax.set_xlabel(r"Number of processors")
ax.set_ylabel(r"Parallel Efficiency on GP3", rotation='horizontal', ha='left')
ax.yaxis.set_label_coords(-0.1,1.05)

ax.grid(True,color='gray', linestyle="-", lw=0.3, zorder=0)

# -- Remove minor tick marks.
for toc in ax.xaxis.get_minor_ticks():
    toc.tick1On = toc.tick2On = False

width = 1e-1
Example #14
0
def GenerateData():
    plt.rcParams['font.serif'] = "Times New Roman"
    plt.rcParams['font.family'] = "serif"
    plt.rcParams['font.weight'] = "light"
    plt.rcParams['font.size'] = 14
    plt.rcParams['mathtext.fontset'] = 'cm'
    plt.rcParams['mathtext.rm'] = 'serif'

    M1 = 10
    M2 = 3

    A = 0.75

    comx, comy = COM(M1, M2, A)
    temp = Roche(comx, comy, M1, M2, A)
    print("COM (", comx, ",", comy, ") = ", temp)

    cblabel = "Gravitational Potential " r"$\Phi$"

    Factor = 1
    steps = 1000
    bound = 1
    #lines = [0, 2, 5, 6,7, 10, 50, 75, 100, 150, 200, 250, 300, 400, 500]
    lines = 1000

    xlist = np.linspace(-bound, bound, steps)
    ylist = np.linspace(-bound, bound, steps)
    x, y = np.meshgrid(xlist, ylist)
    z = [[0 for k in range(steps)] for l in range(steps)]

    i = 0
    while i < steps:
        j = 0
        while j < steps:
            z[i][j] = (Factor * Roche(xlist[i], ylist[j], M1, M2, A))
            if (z[i][j] - 0)**2 < 3:
                print("0 = (", xlist[i], ", ", ylist[j], ") ")
            j = j + 1
        i = i + 1

    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.set_aspect("equal")
    cp = plt.contourf(y,
                      x,
                      z,
                      lines,
                      cmap=plt.cm.bone,
                      locator=ticker.LogLocator(base=10.0, subs="all"),
                      vmax=100)
    cb = fig.colorbar(cp, ticks=[1, 10, 100, 1000], label=cblabel)

    ax.text(A / 2 - 0.06,
            -0.26,
            r"$\mathbf{M_2}$",
            color='White',
            fontsize=14,
            fontweight='bold')
    ax.text(-A / 2 - 0.05,
            -0.26,
            r"$\mathbf{M_1}$",
            color='White',
            fontsize=14,
            fontweight='bold')

    #cp2 = plt.contour(cp, levels=[5.667865], colors='r')
    #cp3 = plt.contour(cp, levels=[5.66555], colors='r')
    cp4 = plt.contour(cp, levels=[4.9281], colors='r')

    plt.plot([A / 2], [0],
             "o",
             color="Yellow",
             markersize=6 * (M2 / (M1 + M2)))
    plt.plot([-A / 2], [0],
             "o",
             color="Yellow",
             markersize=6 * (M1 / (M1 + M2)))
    plt.axis('off')
    #	plt.legend(loc="best")
    plt.savefig("RocheLobe.png", format='png', dpi=1200)
    plt.show()

    return x, y, z
Example #15
0
def compute_dust_mass_volume_density():

    # extra useful quantities (code units)
    Rinf = par.gas.redge[0:len(par.gas.redge) - 1]
    Rsup = par.gas.redge[1:len(par.gas.redge)]
    surface = np.zeros(
        par.gas.data.shape)  # 2D array containing surface of each grid cell
    surf = np.pi * (Rsup * Rsup - Rinf * Rinf
                    ) / par.gas.nsec  # surface of each grid cell (code units)
    for th in range(par.gas.nsec):
        surface[:, th] = surf

    # Mass of gas in units of the star's mass
    Mgas = np.sum(par.gas.data * surface)

    # if hydro simulation is 2D, we first need to compute the dust's
    # surface density before getting its mass volume density
    if par.hydro2D == 'Yes':
        dustcube = compute_dust_mass_surface_density()
        print('--------- computing dust mass surface density ----------')

    print('--------- computing dust mass volume density ----------')
    DUSTOUT = open('dust_density.inp', 'w')
    DUSTOUT.write('1 \n')  # iformat
    DUSTOUT.write(str(par.gas.nrad * par.gas.nsec * par.gas.ncol) +
                  ' \n')  # n cells
    DUSTOUT.write(str(int(par.nbin)) + ' \n')  # nbin size bins

    # array (ncol, nbin, nrad, nsec)
    rhodustcube = np.zeros(
        (par.gas.ncol, par.nbin, par.gas.nrad, par.gas.nsec))

    # dust aspect ratio as function of ibin and r (or actually, R, cylindrical radius)
    hd = np.zeros((par.nbin, par.gas.nrad))

    # work out averaged Stokes number per size bin with fargo3d
    # Epstein regime assumed so far in the code -> St ~ pi/2 (s x rho_int) / Sigma_gas
    # where Sigma_gas should denote the azimuthally-averaged gas surface density here
    # so that St is understood as a 2D array (nbin, nrad)
    if par.fargo3d == 'Yes':
        Stokes_fargo3d = np.zeros((par.nbin, par.gas.nrad))
        axirhogas = np.sum(par.gas.data,
                           axis=1) / par.gas.nsec  # in code units
        axirhogas *= (par.gas.cumass * 1e3) / (
            (par.gas.culength * 1e2)**2.)  # in g/cm^2

        for ibin in range(par.nbin):
            if par.dustfluids != 'No':
                mysize = par.dust_size[par.dustfluids[0] - 1 + ibin]
            else:
                mysize = par.bins[ibin]
            print('mysize = ', mysize)
            Stokes_fargo3d[ibin, :] = 0.5 * np.pi * (
                mysize * 1e2
            ) * par.dust_internal_density / axirhogas  # since dust size is in meters...
            #print('max Stokes number = ', Stokes_fargo3d[ibin,:].max())

    # For the vertical expansion of the dust mass volume density, we
    # need to define a 2D array for the dust's aspect ratio:
    for ibin in range(par.nbin):
        if par.fargo3d == 'No':
            St = avgstokes[ibin]  # avg stokes number for that bin
        if par.fargo3d == 'Yes' and par.dustfluids != 'No':
            St = Stokes_fargo3d[ibin]

        # gas aspect ratio (par.gas.rmed[i] = R in code units)
        hgas = par.aspectratio * (par.gas.rmed)**(par.flaringindex)

        # vertical extension depends on grain Stokes number:
        # T = theoretical: hd/hgas = sqrt(alpha/(St+alpha))
        # T2 = theoretical: hd/hgas = sqrt(Dz/(St+Dz)) with Dz = 10xalpha here is the coefficient for
        # vertical diffusion at midplane, which can differ from alpha
        # F = extrapolation from the simulations by Fromang & Nelson 09
        # G = Gaussian = same as gas (case of well-coupled dust for polarized intensity images)
        if par.z_expansion == 'F':
            hd[ibin, :] = 0.7 * hgas * ((St + 1. / St) / 1000.)**(0.2)
        if par.z_expansion == 'T':
            hd[ibin, :] = hgas * np.sqrt(par.alphaviscosity /
                                         (par.alphaviscosity + St))
        if par.z_expansion == 'T2':
            hd[ibin, :] = hgas * np.sqrt(10.0 * par.alphaviscosity /
                                         (10.0 * par.alphaviscosity + St))
        if par.z_expansion == 'G':
            hd[ibin, :] = hgas

    # dust aspect ratio as function of ibin, r and phi (2D array for each size bin)
    hd2D = np.zeros((par.nbin, par.gas.nrad, par.gas.nsec))
    for th in range(par.gas.nsec):
        hd2D[:, :, th] = hd  # nbin, nrad, nsec

    # grid radius function of ibin, r and phi (2D array for each size bin)
    r2D = np.zeros((par.nbin, par.gas.nrad, par.gas.nsec))
    for ibin in range(par.nbin):
        for th in range(par.gas.nsec):
            r2D[ibin, :, th] = par.gas.rmed

    # work out exponential and normalization factors exp(-z^2 / 2H_d^2)
    # with z = r cos(theta) and H_d = h_d x R = h_d x r sin(theta)
    # r = spherical radius, R = cylindrical radius
    for j in range(par.gas.ncol):
        rhodustcube[j, :, :, :] = dustcube * np.exp(
            -0.5 *
            (np.cos(par.gas.tmed[j]) / hd2D)**2.0)  # ncol, nbin, nrad, nsec
        rhodustcube[j, :, :, :] /= (np.sqrt(2. * np.pi) * r2D * hd2D *
                                    par.gas.culength * 1e2
                                    )  # quantity is now in g / cm^3

    # Renormalize dust's mass volume density such that the sum over the 3D grid's volume of
    # the dust's mass volume density x the volume of each grid cell does give us the right
    # total dust mass, which equals ratio x Mgas. Do that every time except fargo3D simulations
    # carried out in 2D used dust fluids
    if par.hydro2D == 'Yes' and par.dustfluids == 'No':

        rhofield = np.sum(rhodustcube, axis=1)  # sum over dust bins
        Redge, Cedge, Aedge = np.meshgrid(
            par.gas.redge, par.gas.tedge,
            par.gas.pedge)  # ncol+1, nrad+1, Nsec+1
        r2 = Redge * Redge
        jacob = r2[:-1, :-1, :-1] * np.sin(Cedge[:-1, :-1, :-1])
        dphi = Aedge[:-1, :-1, 1:] - Aedge[:-1, :-1, :-1]  # same as 2pi/nsec
        dr = Redge[:-1, 1:, :-1] - Redge[:-1, :-1, :-1]  # same as Rsup-Rinf
        dtheta = Cedge[1:, :-1, :-1] - Cedge[:-1, :-1, :-1]

        # volume of a cell in cm^3
        vol = jacob * dr * dphi * dtheta * (
            (par.gas.culength * 1e2)**3)  # ncol, nrad, Nsec
        total_mass = np.sum(rhofield * vol)
        normalization_factor = par.ratio * Mgas * (par.gas.cumass *
                                                   1e3) / total_mass
        rhodustcube = rhodustcube * normalization_factor
        if par.verbose == 'Yes':
            print('total dust mass after vertical expansion [g] = ',
                  np.sum(np.sum(rhodustcube, axis=1) * vol),
                  ' as normalization factor = ', normalization_factor)

    # finally write mass volume densities for all size bins
    for ibin in range(par.nbin):
        print('dust species in bin', ibin, 'out of ', par.nbin - 1)
        for k in range(par.gas.nsec):
            for j in range(par.gas.ncol):
                for i in range(par.gas.nrad):
                    DUSTOUT.write(str(rhodustcube[j, ibin, i, k]) + ' \n')

    # print max of dust's mass volume density at each colatitude
    if par.verbose == 'Yes':
        for j in range(par.gas.ncol):
            print('max(rho_dustcube) [g cm-3] for colatitude index j = ', j,
                  ' = ', rhodustcube[j, :, :, :].max())

    DUSTOUT.close()

    # plot azimuthally-averaged dust density vs. radius and colatitude for smallest and largest bin sizes
    if par.plot_dust_quantities == 'Yes':

        from mpl_toolkits.axes_grid1 import make_axes_locatable
        import matplotlib.ticker as ticker
        from matplotlib.ticker import (MultipleLocator, FormatStrFormatter,
                                       AutoMinorLocator, LogLocator,
                                       LogFormatter)

        matplotlib.rcParams.update({'font.size': 20})
        matplotlib.rc('font', family='Arial')
        fontcolor = 'white'

        # azimuthally-averaged dust density:
        axidens_smallest = np.sum(rhodustcube[:, 0, :, :],
                                  axis=2) / par.gas.nsec  # (nol,nrad)
        axidens_largest = np.sum(rhodustcube[:, par.nbin - 1, :, :],
                                 axis=2) / par.gas.nsec  # (nol,nrad)

        radius_matrix, theta_matrix = np.meshgrid(par.gas.redge, par.gas.tedge)
        R = radius_matrix * np.sin(
            theta_matrix) * par.gas.culength / 1.5e11  # in au
        Z = radius_matrix * np.cos(
            theta_matrix) * par.gas.culength / 1.5e11  # in au

        # midplane dust mass volume density:
        midplane_dens_smallest = rhodustcube[par.gas.ncol // 2 - 1,
                                             0, :, :]  # (nrad,nsec)
        midplane_dens_largest = rhodustcube[par.gas.ncol // 2 - 1,
                                            par.nbin - 1, :, :]  # (nrad,nsec)

        radius_matrix, theta_matrix = np.meshgrid(par.gas.redge, par.gas.pedge)
        X = radius_matrix * np.cos(
            theta_matrix) * par.gas.culength / 1.5e11  # in au
        Y = radius_matrix * np.sin(
            theta_matrix) * par.gas.culength / 1.5e11  # in au

        print(
            '--------- a) plotting azimuthally-averaged dust density (R,z) ----------'
        )

        # --- smallest bin size ---
        fig = plt.figure(figsize=(8., 8.))
        plt.subplots_adjust(left=0.17, right=0.92, top=0.88, bottom=0.1)
        ax = plt.gca()
        ax.tick_params(top='on',
                       right='on',
                       length=5,
                       width=1.0,
                       direction='out')
        ax.tick_params(axis='x', which='minor', top=True)
        ax.tick_params(axis='y', which='minor', right=True)

        ax.set_xlabel('Radius [au]')
        ax.set_ylabel('Altitude [au]')
        ax.set_ylim(Z.min(), Z.max())
        ax.set_xlim(R.min(), R.max())

        if axidens_smallest.max() / axidens_smallest.min() > 1e3:
            mynorm = matplotlib.colors.LogNorm(vmin=1e-3 *
                                               axidens_smallest.max(),
                                               vmax=axidens_smallest.max())
        else:
            mynorm = matplotlib.colors.LogNorm(vmin=axidens_smallest.min(),
                                               vmax=axidens_smallest.max())

        CF = ax.pcolormesh(R,
                           Z,
                           axidens_smallest,
                           cmap='nipy_spectral',
                           norm=mynorm)

        divider = make_axes_locatable(ax)
        cax = divider.append_axes("top", size="2.5%", pad=0.12)
        cb = plt.colorbar(CF, cax=cax, orientation='horizontal')
        cax.xaxis.tick_top()
        cax.xaxis.set_tick_params(labelsize=20, direction='out')
        cax.xaxis.set_major_locator(ticker.LogLocator(base=10.0, numticks=10))

        cax.xaxis.set_label_position('top')
        cax.set_xlabel('dust density ' + r'[g cm$^{-3}$]')
        cax.xaxis.labelpad = 8

        fileout = 'dust_density_smallest_Rz.pdf'
        plt.savefig('./' + fileout, dpi=160)
        plt.close(fig)

        # --- repeat for largest bin size ---
        fig = plt.figure(figsize=(8., 8.))
        plt.subplots_adjust(left=0.17, right=0.92, top=0.88, bottom=0.1)
        ax = plt.gca()
        ax.tick_params(top='on',
                       right='on',
                       length=5,
                       width=1.0,
                       direction='out')
        ax.tick_params(axis='x', which='minor', top=True)
        ax.tick_params(axis='y', which='minor', right=True)

        ax.set_xlabel('Radius [au]')
        ax.set_ylabel('Altitude [au]')
        ax.set_ylim(Z.min(), Z.max())
        ax.set_xlim(R.min(), R.max())

        if axidens_largest.max() / axidens_largest.min() > 1e3:
            mynorm = matplotlib.colors.LogNorm(vmin=1e-3 *
                                               axidens_largest.max(),
                                               vmax=axidens_largest.max())
        else:
            mynorm = matplotlib.colors.LogNorm(vmin=axidens_largest.min(),
                                               vmax=axidens_largest.max())

        CF = ax.pcolormesh(R,
                           Z,
                           axidens_largest,
                           cmap='nipy_spectral',
                           norm=mynorm)

        divider = make_axes_locatable(ax)
        cax = divider.append_axes("top", size="2.5%", pad=0.12)
        cb = plt.colorbar(CF, cax=cax, orientation='horizontal')
        cax.xaxis.tick_top()
        cax.xaxis.set_tick_params(labelsize=20, direction='out')
        cax.xaxis.set_major_locator(ticker.LogLocator(base=10.0, numticks=10))

        cax.xaxis.set_label_position('top')
        cax.set_xlabel('dust density ' + r'[g cm$^{-3}$]')
        cax.xaxis.labelpad = 8

        fileout = 'dust_density_largest_Rz.pdf'
        plt.savefig('./' + fileout, dpi=160)
        plt.close(fig)

        print('--------- b) plotting dust density (x,y) ----------')

        # --- smallest bin size ---
        fig = plt.figure(figsize=(8., 8.))
        plt.subplots_adjust(left=0.17, right=0.92, top=0.88, bottom=0.1)
        ax = plt.gca()
        ax.tick_params(top='on',
                       right='on',
                       length=5,
                       width=1.0,
                       direction='out')
        ax.tick_params(axis='x', which='minor', top=True)
        ax.tick_params(axis='y', which='minor', right=True)

        ax.set_xlabel('x [au]')
        ax.set_ylabel('y [au]')
        ax.set_ylim(Y.min(), Y.max())
        ax.set_xlim(X.min(), X.max())

        if midplane_dens_smallest.max() / midplane_dens_smallest.min() > 1e3:
            mynorm = matplotlib.colors.LogNorm(
                vmin=1e-3 * midplane_dens_smallest.max(),
                vmax=midplane_dens_smallest.max())
        else:
            mynorm = matplotlib.colors.LogNorm(
                vmin=midplane_dens_smallest.min(),
                vmax=midplane_dens_smallest.max())

        midplane_dens_smallest = np.transpose(midplane_dens_smallest)
        CF = ax.pcolormesh(X,
                           Y,
                           midplane_dens_smallest,
                           cmap='nipy_spectral',
                           norm=mynorm,
                           rasterized=True)
        #CF = ax.pcolormesh(X,Y,midplane_dens_smallest,cmap='nipy_spectral',norm=mynorm)

        divider = make_axes_locatable(ax)
        cax = divider.append_axes("top", size="2.5%", pad=0.12)
        cb = plt.colorbar(CF, cax=cax, orientation='horizontal')
        cax.xaxis.tick_top()
        cax.xaxis.set_tick_params(labelsize=20, direction='out')

        cax.xaxis.set_label_position('top')
        cax.set_xlabel('midplane dust density ' + r'[g cm$^{-3}$]')
        cax.xaxis.labelpad = 8

        fileout = 'dust_density_smallest_midplane.pdf'
        plt.savefig('./' + fileout, dpi=160)
        plt.close(fig)

        # --- repeat for largest bin size ---
        fig = plt.figure(figsize=(8., 8.))
        plt.subplots_adjust(left=0.17, right=0.92, top=0.88, bottom=0.1)
        ax = plt.gca()
        ax.tick_params(top='on',
                       right='on',
                       length=5,
                       width=1.0,
                       direction='out')
        ax.tick_params(axis='x', which='minor', top=True)
        ax.tick_params(axis='y', which='minor', right=True)

        ax.set_xlabel('x [au]')
        ax.set_ylabel('y [au]')
        ax.set_ylim(Y.min(), Y.max())
        ax.set_xlim(X.min(), X.max())

        if midplane_dens_largest.max() / midplane_dens_largest.min() > 1e3:
            mynorm = matplotlib.colors.LogNorm(
                vmin=1e-3 * midplane_dens_largest.max(),
                vmax=midplane_dens_largest.max())
        else:
            mynorm = matplotlib.colors.LogNorm(
                vmin=midplane_dens_largest.min(),
                vmax=midplane_dens_largest.max())

        midplane_dens_largest = np.transpose(midplane_dens_largest)
        CF = ax.pcolormesh(X,
                           Y,
                           midplane_dens_largest,
                           cmap='nipy_spectral',
                           norm=mynorm,
                           rasterized=True)
        #CF = ax.pcolormesh(X,Y,midplane_dens_largest,cmap='nipy_spectral',norm=mynorm)

        divider = make_axes_locatable(ax)
        cax = divider.append_axes("top", size="2.5%", pad=0.12)
        cb = plt.colorbar(CF, cax=cax, orientation='horizontal')
        cax.xaxis.tick_top()
        cax.xaxis.set_tick_params(labelsize=20, direction='out')

        cax.xaxis.set_label_position('top')
        cax.set_xlabel('midplane dust density ' + r'[g cm$^{-3}$]')
        cax.xaxis.labelpad = 8

        fileout = 'dust_density_largest_midplane.pdf'
        plt.savefig('./' + fileout, dpi=160)
        plt.close(fig)

    # free RAM memory
    del rhodustcube, dustcube, hd2D, r2D
Example #16
0
def initial_enthalpy_plot(loading,
                          enthalpy,
                          fitted_enthalpy,
                          log=False,
                          title=None,
                          extras=None,
                          ax=None):
    """
    Draws the initial enthalpy calculation plot.

    Parameters
    ----------
    loading : array
        Loadings for which the initial enthalpy was calculated.
    enthalpy : array
        The enthalpy corresponding to each loading.
    fitted_enthalpy : array
        The predicted enthalpy corresponding to each loading.
    log : int
        Whether to display a logarithmic graph
    title : str
        Name of the material to put in the title.
    ax : matplotlib axes object, default None
        The axes object where to plot the graph if a new figure is
        not desired.

    Returns
    -------
    matplotlib.axes
        Matplotlib axes of the graph generated. The user can then apply their
        own styling if desired.

    """
    # Generate the figure if needed
    if ax is None:
        _, ax = plt.subplots()

    ax.plot(loading,
            enthalpy,
            marker='o',
            color='black',
            label='original',
            linestyle='')
    ax.plot(loading, fitted_enthalpy, color='r', label='fitted', linestyle='-')

    if extras is not None:
        for param in extras:
            ax.plot(param[0], param[1], label=param[2], linestyle='--')
    if log:
        ax.set_xscale('log')
        ax.xaxis.set_major_locator(
            ticker.LogLocator(base=10.0, numticks=15, numdecs=20))

    ax.set_title(title + " initial enthalpy fit")
    ax.set_xlabel('Loading')
    ax.set_ylabel('Enthalpy')
    ax.legend(loc='best')
    ax.set_ylim(bottom=0, top=(max(enthalpy) * 1.2))
    ax.set_xlim(left=0)
    ax.grid(True)

    return ax
Example #17
0
def bracket_descent_test(xg, display=False, compare=False, i=1):
    """
    ======================================================================================
    Use the Bracket Descent method to minimize a cost function, j, defined in cost module.
    ======================================================================================

    Parameters
    ----------
    xg : list
        Initial guess
    display : Boolean, Optional
        If set to True, figures will be created to illustrate the optimization
        path taken and the distance from convergence at each step.
    compare : Boolean, optional
        If set to True, a figure will be created to directly compare Newton and
        Bracket Descent methods.
    i=1 : Integer, Optional
        Sets the name of the figures as hw231(/2)_i.png.

    Returns
    ---------
    xf : ndarray
        Computed location of minimum
    jf : float
        Computed minimum
    output : Tuple
        containing the time taken for the minimia to be found for each of newton and
        bracket descent methods. An average over 10 tests is taken, only set if
        compare parameter set to True, otherwise empty.

    Calling this function will produce two figures. The first will containing two
    subplots illustrating the location of each step in the minimization path, overlayed
    over the initial cost function, and the distance of j from the final, computed
    minimum at each iteration.
    The second plot (which is only produced when 'compare' is set to True) demonstrates
    the distance of each step from the final, converged minimum at each iteration.
    This shows that the newton method requires significantly fewer steps and is hence
    faster.

    Trends Observed
    ----------------
    Figures hw321_i show the path taken during a bracket descent conversion is much
    longer than in a newton conversion (shown in figures hw22i). This is because
    the B-D method limits the size of a step to 2*L where L is definied by the size
    of an equilateral triangle whose centroid moved with each step. The method is
    furthermore designed such that this triangle will only decrease in size per
    iteration, and hence the maximum length a step can take can only be
    decreased (not increased) throughout the convergence. The figures further show
    that steps appear to be taken initially perpendicular to the curvature, finding
    the minimum along that strip, and then converging in down the parallel Path
    until they reach a level of tolerance.

    In contrast, the Newton approach is not limited in the size of the steps it is
    able to take and can hence converge in a much smaller number of iterations.
    This is a result of the use of gradients in this method. Figures hw22i illustrate
    how each step travels through many bands on the contour plot (representing
    differences of 1 order of magnitude each) as the method searches for the
    direction of minimisation.

    """
    cost.c_noise = False
    hw2.tol = 10**(-6)
    hw2.itermax = 1000
    t34 = 0
    output = ()

    if compare:
        N = 10
    else:
        N = 1

    for j in range(1, N):
        t3 = time()
        hw2.bracket_descent(xg)
        t4 = time()
        t34 = t34 + (t4 - t3)

    X, Y = hw2.xpath
    xf = [X[-1], Y[-1]]
    jf = hw2.jpath[-1]
    d1 = np.sqrt((X - xf[0])**2 + (Y - xf[1])**2)

    if display:
        Minx = min(X) - 1
        Maxx = max(X) + 1
        Miny = min(Y) - 1
        Maxy = max(Y) + 1
        [Xj, Yj] = np.linspace(Minx, Maxx, 200), np.linspace(Miny, Maxy, 200)
        #calculate noiseless cost function at each point on 2D grid
        j = [[cost.costj([xi, yi]) for xi in Xj] for yi in Yj]
        f, (p1, p2) = plt.subplots(1, 2)
        p1.contourf(Xj, Yj, j, locator=ticker.LogLocator(), cmap=cm.GnBu)
        p1.plot(X, Y, 'g', marker='d')
        p1.set_xlabel('X1-location')
        p1.set_ylabel('X2-location')
        p1.set_title('Convergence Path')
        p2.semilogy(np.linspace(1, len(X), len(X)), hw2.jpath)
        p2.set_xlabel('Iteration number')
        p2.set_ylabel('distance from converged minimum')
        p2.set_title('Rate')
        plt.suptitle('Rosemary Teague, bracket_descent_test, initial guess =' +
                     str(xg) + ' \n Rate of convergence of a cost function')
        plt.tight_layout(pad=4)
        plt.savefig('hw231_' + str(i), dpi=700)

    if compare:
        plt.close('all')
        One, = plt.loglog(np.linspace(1, len(X), len(X)), hw2.jpath)
        xf2, jf2, outputn = newton_test(xg, timing=True)
        X2, Y2 = outputn[1], outputn[2]
        d2 = np.sqrt((X2 - xf2[0])**2 + (Y2 - xf2[1])**2)
        print(np.linspace(1, len(X2), len(X2)), outputn[3])
        Two, = plt.loglog(np.linspace(1, len(X2), len(X2)), outputn[3])
        One.set_label('Bracket Descent')
        Two.set_label('Newton')
        plt.xlabel('Iteration number')
        plt.ylabel('Distance from converged minimum')
        plt.legend()
        plt.title('Rosemary Teague, bracket_descent_test, initial guess =' +
                  str(xg) +
                  ' \n Comparison of Newton and Bracket Descent Methods')
        plt.savefig('hw232_' + str(i), dpi=700)

        output = (outputn[0], t34 / N)

    return xf, jf, output
Example #18
0
def plot_data(df,
              title='',
              min=None,
              max=None,
              ylog=False,
              stack=False,
              subplot=111,
              fig=None,
              yticks=None,
              gf=False,
              timebase=28,
              c_mark=False):

    # Create new fig
    if fig is None:
        fig = plt.figure()

    # Add to existing fig
    ax = fig.add_subplot(subplot)

    # Create x and y data for plotting
    x = df.index.to_numpy()
    x_t = df.index.to_numpy(dtype='float64')
    y = df.to_numpy()

    # If the user wants a graph of Growth Rate, do some spooky mathemagic....
    # This part needs better commenting!
    if gf:
        x = x[2:]
        y = y[2:]
        x_t = x_t[2:]
        y = np.diff(y, axis=0)
        y = np.insert(y, 0, y[0], axis=0)
        y = np.insert(y, -1, y[-1], axis=0)
        y = convolve2d(y, [[0.25], [0.5], [0.25]], mode='valid')
        y = np.diff(np.log(y + 1e-3), axis=0)
        y = np.insert(y, 0, y[0], axis=0)
        y = np.insert(y, -1, y[-1], axis=0)
        y = convolve2d(y, [[0.25], [0.5], [0.25]], mode='valid')
        x = x[2:]
        x_t = x_t[2:]
        #print(x.shape, y.shape)

    if stack:
        ax.stackplot(x, y.transpose(), labels=df.columns)
    else:
        # Mark data point every 7 days
        ax.plot(x, y, markevery=7)

    # Set axes, grid and ticks
    if min is not None and max is not None:
        ax.set_ylim([min, max])
    if ylog:
        ax.set_yscale('log')
        locmin = plticker.LogLocator(base=10.0, subs=(1, 10))
        ax.yaxis.set_major_formatter(plticker.FormatStrFormatter("%.0f"))
        ax.yaxis.set_major_locator(locmin)

    ax.grid(axis='y', which='major', linewidth=0.8)
    ax.grid(axis='y', which='minor', linewidth=0.3)
    ax.grid(axis='x', which='both')

    ax.xaxis.set_major_locator(plticker.MultipleLocator(base=timebase))
    ax.xaxis.set_minor_locator(plticker.MultipleLocator(base=timebase / 2))

    if stack:
        ax.legend(loc='upper left')
    else:
        for i, line in enumerate(ax.get_lines()):
            line.set_marker(MARKERS[i])
            #line.get_color()
            if gf:
                # calc the trendline
                z = np.polyfit(x_t[4:], y[4:, i], 1)
                p = np.poly1d(z)
                ax.plot(x, p(x_t), "--", color=line.get_color())

        ax.legend(ax.get_lines(), df.columns, loc='upper left')

    # Set graph title
    ax.set_title(title)

    ax.yaxis.tick_right()

    # place a text box in upper left in axes coords
    if c_mark:
        ax.text(0.99,
                0.05,
                "(c) E. Maitland 2020",
                transform=ax.transAxes,
                fontsize=8.5,
                va='top',
                ha='right')  # , bbox=props)

    return ax
Example #19
0
def newton_test(xg, display=False, i=1, timing=False):
    """
    ============================================================================
    Use Newton's method to minimize a cost function, j, defined in cost module.
    ============================================================================

    Parameters
    ----------
    xg : list
        Initial guess
    display : Boolean, Optional
        If set to True, figures will be created to illustrate the optimization
        path taken and the distance from convergence at each step.
    i=1 : Integer, Optional
        Sets the name of the figures as hw22i.png
    timing : Boolean, Optional
        If set to true, an average time will be calculated for the completion
        of finding a minimum and will be appended to the tuple output.

    Returns
    ---------
    xf : ndarray
        Computed location of minimum
    jf : float
        Computed minimum
    output : Tuple
        containing the time taken for the minimia to be found. An
        average over 10 tests, only set if timining parameter set to True, otherwise
        empty.

    Calling this function will produce a figure containing two subplots. The first
    will illustrate the location of each step in the minimization path, overlayed
    over the initial cost function. The second will illustrate the distance from
    the final, computed minimum at each iteration.

    """
    cost.c_noise = False
    hw2.tol = 10**(-6)
    hw2.itermax = 1000
    t21 = 0
    output = ()

    if timing:
        N = 10
    else:
        N = 1

    for j in range(1, N):
        t1 = time()
        hw2.newton(xg)
        t2 = time()
        t21 = t21 + (t2 - t1)

    X, Y = hw2.xpath
    xf = [X[-1], Y[-1]]
    jpathn = [j for j in hw2.jpath]
    jf = hw2.jpath[-1]

    output = (t21 / N, X, Y, jpathn)

    if display:
        Minx = min(X) - 1
        Maxx = max(X) + 1
        Miny = min(Y) - 1
        Maxy = max(Y) + 1
        [Xj, Yj] = np.linspace(Minx, Maxx, 200), np.linspace(Miny, Maxy, 200)
        #calculate noiseless cost function at each point on 2D grid
        j = [[cost.costj([xi, yi]) for xi in Xj] for yi in Yj]

        f, (p1, p2) = plt.subplots(1, 2)
        p1.contourf(Xj, Yj, j, locator=ticker.LogLocator(), cmap=cm.GnBu)
        p1.plot(X, Y, 'g', marker='d')
        p1.set_xlim(min(X) - 1, max(X) + 1)
        p1.set_xlabel('X1-location')
        p1.set_ylabel('X2-location')
        p1.set_title('Convergence Path')
        p2.plot(np.linspace(0, len(X) - 1, len(X)), hw2.jpath - jf)
        p2.set_xlabel('Iteration number')
        p2.set_ylabel('distance from converged minimum')
        p2.set_title('Rate')
        plt.suptitle('Rosemary Teague, Newton_test, initial guess =' +
                     str(xg) + ' \n Convergence of a cost function')
        plt.tight_layout(pad=4)
        plt.savefig('hw22' + str(i), dpi=700)

    return xf, jf, output
def log_minor_ticks(ax):
	locmin = ticker.LogLocator(base=10.0, subs=(0.1,0.2,0.4,0.6,0.8,1,2,4,6,8,10)) 
	ax.yaxis.set_minor_locator(locmin)
	ax.yaxis.set_minor_formatter(ticker.NullFormatter())
Example #21
0
setup(ax)
ax.plot(range(0, 5), [0]*5, color='White')
ax.xaxis.set_major_locator(ticker.IndexLocator(base=.5, offset=.25))
ax.text(0.0, 0.5, "IndexLocator(base=0.5, offset=0.25)",
        fontsize=14, transform=ax.transAxes)

# Auto Locator
ax = plt.subplot(n, 1, 6)
setup(ax)
ax.xaxis.set_major_locator(ticker.AutoLocator())
ax.xaxis.set_minor_locator(ticker.AutoMinorLocator())
ax.text(0.0, 0.5, "AutoLocator()", fontsize=14, transform=ax.transAxes)

# MaxN Locator
ax = plt.subplot(n, 1, 7)
setup(ax)
ax.xaxis.set_major_locator(ticker.MaxNLocator(4))
ax.xaxis.set_minor_locator(ticker.MaxNLocator(40))
ax.text(0.0, 0.5, "MaxNLocator(n=4)", fontsize=14, transform=ax.transAxes)

# Log Locator
ax = plt.subplot(n, 1, 8)
setup(ax)
ax.set_xlim(10**3, 10**10)
ax.set_xscale('log')
ax.xaxis.set_major_locator(ticker.LogLocator(base=10.0, numticks=15))
ax.text(0.0, 0.5, "LogLocator(base=10, numticks=15)",
        fontsize=15, transform=ax.transAxes)

plt.show()
Example #22
0
#b=parsec
for j in range(N_M):
        n_p = rho/M_p_bins[j]
        for i in range(N_a):
                b = calc_b_max(M_p_bins[j], v_rms, a_bins[i], m1, m2)
                for k in range(N_enc):
                        (notBound, a_new, e_new) = impulseEncounter(m1, m2, v_rms, b, a_bins[i], e, M_p_bins[j])
                        a_frac_avg[i,j] += (a_new-a_bins[i])/a_bins[i]
#Normalise a_frac_avg
a_frac_avg /= N_enc

#Plot
plt.title(r'Absolute average fractional change in semi-major axis due to single encounter at $b=b_{\mathrm{max}}$')
ax = plt.gca()
cs = ax.contourf(a_bins/au, M_p_bins/(2.0*10.0**30.0), np.transpose(np.absolute(a_frac_avg)), locator=ticker.LogLocator())
plt.colorbar(cs)
plt.ylabel(r'Perturber mass, $M_\odot$')
plt.xlabel('Initial semi-major axis, au')
plt.xscale('log')
plt.yscale('log')
plt.show()
        
        
        
        
        
        
        
        
        
Example #23
0
def plot_smps(d_mtx,
              fit_lognormal_modes=False,
              fig=None,
              ax=None,
              zlim=[10**1, 10**6],
              xlim=None,
              logscale_z=True,
              title='Size distribution',
              xlabel='Timestamp',
              ylabel='Mobility diameter (nm)',
              zlabel='dN/d(log$_{10}$d$_0$) ($cm^{-3}$)',
              saveorshowplot='show',
              output_path=None,
              output_filename='SMPS.png'):
    #https://matplotlib.org/examples/images_contours_and_fields/pcolormesh_levels.html
    d_mtx = _fill_smps_times(d_mtx)

    # Setup data input
    x0 = np.array([dates.date2num(d) for d in d_mtx.index])  # Time axis
    try:  #try tsi first
        y0 = np.array([float(s) for s in d_mtx.columns.values])  # size axis
    except:  #otherwise its grimm!
        y0 = np.array([float(s.split(' ')[0]) for s in d_mtx.columns.values])
    x, y = np.meshgrid(x0, y0)
    z = d_mtx.as_matrix().transpose()

    with np.errstate(
            invalid='ignore'):  # ignore runtimewarning about nan values
        z[z < zlim[0]] = zlim[
            0]  # mask bad values so that there are no holes in the data

    # Plot contour
    cmap = plt.get_cmap('jet')
    if logscale_z:
        tick_loc = tck.LogLocator()
        cont_levels = np.logspace(np.log10(zlim[0]), np.log10(zlim[1]), 100)
        z_loc_arr = np.logspace(np.log10(zlim[0]), np.log10(zlim[1]), 6)
    else:
        tick_loc = tck.LinearLocator()
        cont_levels = np.linspace(zlim[0], zlim[1], 100)
        z_loc_arr = np.array(
            [round_to_1(x) for x in np.linspace(zlim[0], zlim[1], 6)])

    if (fig is None) and (ax is None):
        fig, ax = plt.subplots(nrows=1, figsize=(15, 5))
    elif (fig is None) or (ax is None):
        assert True, \
            'You must pass both a figure and axis object in to the \
            size distribution plotting routine'

    cf = ax.contourf(x,
                     np.log(y),
                     z,
                     levels=cont_levels,
                     locator=tick_loc,
                     cmap=cmap,
                     interpolation=None)

    ax.set_title(title)

    # Format y axis labels
    y_loc_arr = np.logspace(np.log10(y0[0]), np.log10(y0[-1]), 7)
    rounding = [round_to_1(y) for y in y_loc_arr[1:-1]]
    y_loc_arr = np.append(np.insert(rounding, 0, np.ceil(y_loc_arr[0])),
                          np.floor(y_loc_arr[-1]))

    y_loc = tck.FixedLocator(np.log(y_loc_arr))
    y_loc_min = tck.FixedLocator(
        np.log(
            np.concatenate((np.arange(10, 100, 10), np.arange(100, 700,
                                                              100)))))

    ax.yaxis.set_major_locator(y_loc)
    ax.set_yticklabels(y_loc_arr)
    ax.yaxis.set_minor_locator(y_loc_min)
    ax.set_ylabel(ylabel)

    # Format x axis labels
    if xlim is not None:
        ax.set_xlim(xlim)
    x_loc_arr = get_time_ticks(x0, 6)
    x_loc = tck.FixedLocator(x_loc_arr)
    x_labels = np.array(
        [dates.num2date(dt).strftime('%d-%b\n%H:%M') for dt in x_loc_arr])
    ax.xaxis.set_major_locator(x_loc)
    ax.set_xticklabels(x_labels)
    ax.set_xlabel(xlabel)

    # Format colorbar
    cbar = fig.colorbar(cf, ax=ax, ticks=z_loc_arr, pad=0.01)

    cbar.ax.set_xticklabels(z_loc_arr)
    cbar.set_label(zlabel)

    if fit_lognormal_modes:
        # Calculate the maximum in each mode using a lognormal fitting procedure
        mode_max = mode_max_from_dist_fit(d_mtx)
        # Overlay the mode sizes
        ax.plot(np.log(mode_max), '-k')

    atmosplots.saveorshowplot(plt, saveorshowplot, output_path,
                              output_filename)

    return
# 生成网格数据
X, Y = np.meshgrid(x_value, y_value)

#显示3D图像
fig = plt.figure()
ax = plt.gca(projection='3d')
#ax.plot(X,Y,f(X,Y))
ax.plot_surface(X,Y,f(X,Y),cmap='jet')
#plt.show()

#显示等高线
plt.figure()
# 填充等高线的颜色, 8是等高线分为几部分
plt.contourf(X, Y, f(X, Y), 5, alpha=0)
# 绘制等高线
C = plt.contour(X, Y, f(X, Y), 8, locator=ticker.LogLocator(), colors='black', linewidth=0.01)
# 绘制等高线数据
plt.clabel(C, inline=True, fontsize=10)


alpha = 0.09
beta = 0.8
x = np.array([[-0.2],[0.4]]) #随机选取一个起始点
eta = 0.000001 #学习率

#print(df(x))

xv = [x[0,0]]
yv = [x[1,0]]
plt.plot(x[0, 0], x[1, 0], marker='o')
#plt.show()
win_levels = np.array([0, args.boundary])
all_levels = np.array([0, 1, 10, 100, 1000])

norm = cm.colors.Normalize(vmax=abs(z).max(), vmin=-abs(z).max())
cmap = cm.PRGn

fig, ax = plt.subplots()
ax.set_yscale("log")
ax.set_xlabel('Lag in arrival time (hrs)')
ax.set_ylabel('Challenger inoculum (CFU)')

cset1 = plt.contourf(x,
                     y,
                     z,
                     win_levels,
                     locator=ticker.LogLocator(),
                     colors=('#289600', '#ffffff'))
#cmap=cm.get_cmap(cmap, len(levels) - 1), norm=norm)
# t_com
plt.axvline(x=3.76, color='k', linestyle='--', label='t_com')
plt.text(2.7, 3000, 't_com', rotation=90)

#cset2 = plt.contour(x, y, z, all_levels, locator=ticker.LogLocator(), colors='k', linewidths = 1)
#plt.clabel(cset2, fmt='%1.0f', inline=1, fontsize=10)

# Resident wins boundary
cset3 = plt.contour(x, y, z, win_levels, colors='k', linewidths=2)
plt.title('Isogenic challenger')
#plt.colorbar(cset1) # legend

plt.savefig(args.output + ".pdf")
    def pps_eigenmodes_eval(self):

        ## LOAD ComputeSaveNormalizedEigenError: fig1
        fig1_data = np.load(self.eval_dir + '/ComputeSaveNormalizedEigenError_fig1.npz')
        normalized_relative_error = fig1_data['nre']
        true_tsnap = fig1_data['tt']
        linearEvolvingEigen = fig1_data['le']
        relative_error = self.params['relative_error']
        ## draw ComputeSaveNormalizedEigenError: fig1
        # plot normalized relative error for each eigenmodes
        plt.figure(figsize=FIG_SIZE)
        cmap = self.get_cmap(normalized_relative_error.shape[1])
        for i in range(normalized_relative_error.shape[1]):
            plt.plot(true_tsnap, normalized_relative_error[:, i], '-', c=cmap(i), label= str(i + 1) + 'th-eigenvalue: ' + "{0:.3f}".format(linearEvolvingEigen[i,i]))
        plt.xlabel('time',fontsize = 32)
        if relative_error:
            plt.ylabel('normalized error',fontsize = 32)
        else:
            plt.ylabel('error',fontsize = 32)
        plt.yscale('log')
        lgd = plt.legend(bbox_to_anchor=(1, 0.5))
        plt.savefig(self.pps_dir + '/normalized_relative_eigen_error.png',
                    bbox_extra_artists=(lgd,),
                    bbox_inches='tight')
        plt.close()

        ## LOAD ComputeSaveNormalizedEigenError: fig2
        fig2_data = np.load(self.eval_dir + '/ComputeSaveNormalizedEigenError_fig2.npz')
        mean_normalized_relative_error = fig2_data['mre']
        small_to_large_error_eigen_index = fig2_data['stli']
        small_to_large_error_eigen_index_kou = fig2_data['stli_kou']
        abs_sum_kou = fig2_data['abs_sum_kou']
        error_reconstruct_state_list = fig2_data['ersl']
        # bool_index_further = fig2_data['iestli'] ## it is removed..

        self.small_to_large_error_eigen_index = small_to_large_error_eigen_index
        # self.bool_index_further = bool_index_further

        ## draw ComputeSaveNormalizedEigenError: fig2
        # error ordered
        fig= plt.figure(figsize=FIG_SIZE)
        ax1 = fig.add_subplot(111)
        ax2 = ax1.twinx()
        ax1.plot(range(1, normalized_relative_error.shape[1] + 1),
                 mean_normalized_relative_error[small_to_large_error_eigen_index],
                 'b-^', label='max relative eigenfunction error')
        ax1.set_xlabel(r'number of selected eigenmodes $\hat{L}$',fontsize = 32)
        # ax1.legend(bbox_to_anchor=(1, 0.5))
        ax1.set_yscale('log')
        if relative_error:
            ax1.set_ylabel('max linear evolving normalized error', color='b',fontsize = 32)
        else:
            ax1.set_ylabel('max error', color='b',fontsize = 32)
        # plot error from reconstruction state from eigenfunction values
        ax2.plot(range(1, normalized_relative_error.shape[1] + 1),
                 error_reconstruct_state_list,'r-o',
                 label='reconstruction normalized error')
        if relative_error:
            ax2.set_ylabel('reconstruction normalized error', color='r',fontsize = 32)
        else:
            ax2.set_ylabel('reconstruction error', color='r',fontsize = 32)
        # ax2.set_ylim([-1,20])
        ax2.set_yscale('log')

        # set up ticks
        yticks = ticker.LogLocator()
        ax1.yaxis.set_major_locator(yticks)
        ax2.yaxis.set_major_locator(yticks)

        # ax2.legend(bbox_to_anchor=(1, 0.5))
        plt.savefig(self.pps_dir + '/reConstr_decay_normalized_relative_eigen_error.png',
                    bbox_inches='tight')
        plt.close()

        ## LOAD ComputeSaveNormalizedEigenError: fig3
        fig3_data = np.load(self.eval_dir + '/ComputeSaveNormalizedEigenError_fig3.npz')
        top_k_modes_list = fig3_data['tkm_index_list']

        self.top_k_modes_list = top_k_modes_list

        # print out kou's result
        print('as a comparison: index chosen by Kou criterion: ')
        print(small_to_large_error_eigen_index_kou + 1)
        print('corresponding abs sum:')
        print(abs_sum_kou)

        self.index_selected_in_full = self.small_to_large_error_eigen_index[:self.top_k_modes_list[-1] + 1]
        # self.index_selected_in_full = self.small_to_large_error_eigen_index

        ## draw ComputeSaveNormalizedEigenError: fig3
        # fig. 3: plot normalized relative error for top K smallest error eigenmodes
        plt.figure(figsize=FIG_SIZE)
        cmap = self.get_cmap(len(top_k_modes_list))
        for i in top_k_modes_list:
            i_s = small_to_large_error_eigen_index[i]
            plt.plot(true_tsnap, normalized_relative_error[:, i_s], '-', c=cmap(i),
                     label= str(i_s + 1) + 'th-eigenvalue: ' + "{0:.3f}".format(linearEvolvingEigen[i_s,i_s]))
            # print eigenvectors
            # print 'no.  eigen vectors ', i_s+1
            # print self.model.KoopmanEigenV[:, i_s]
        plt.xlabel('time',fontsize = 32)
        if relative_error:
            plt.ylabel('normalized error',fontsize = 32)
        else:
            plt.ylabel('error',fontsize = 32)
        plt.yscale('log')
        lgd = plt.legend(bbox_to_anchor=(1, 0.5))
        plt.savefig(self.pps_dir +  '/top_' + str(len(top_k_modes_list)) + '_normalized_relative_eigen_error.png',
                    bbox_extra_artists=(lgd,),
                    bbox_inches='tight')
        plt.close()

        # load MTENET
        fig4_data = np.load(self.eval_dir + '/MultiTaskElasticNet_result.npz')
        alphas_enet = fig4_data['alphas_enet']
        coefs_enet = fig4_data['coefs_enet']
        residual_array = fig4_data['residual_array']

        # coefficients vs alpha & number non-zero

        num_target_components = coefs_enet.shape[0]
        alphas_enet_log_negative = -np.log10(alphas_enet)

        # print("coef_enet real= ", np.real(coefs_enet))
        # print("coef_enet imag= ", np.imag(coefs_enet))

        for i_component in range(num_target_components):

            plt.figure(figsize=FIG_SIZE)
            cmap = self.get_cmap(len(top_k_modes_list))
            for i in top_k_modes_list:
                i_s = small_to_large_error_eigen_index[i]
                plt.plot(alphas_enet_log_negative, abs(coefs_enet[i_component,i,:]), '-*', c=cmap(i),
                         label = 'No. ' + str(i + 1) + ', index = ' + str(i_s+1))
            max_val = np.max(abs(coefs_enet[i_component, :, -1]))
            min_val = np.min(abs(coefs_enet[i_component, :, -1]))

            diss = (max_val - min_val)/2
            mean = (max_val + min_val)/2

            plt.xlabel(r'-$\log_{10}(\alpha)$',fontsize = 32)
            plt.ylabel('abs of coefficients',fontsize = 32)
            plt.ylim([mean - diss*1.05, mean + diss*3])

            lgd = plt.legend(bbox_to_anchor=(1, 0.5))
            plt.savefig(self.pps_dir + '/multi-elastic-net-coef-' + str(i_component+1) + '.png',
                        bbox_extra_artists=(lgd,),
                        bbox_inches='tight')
            plt.close()

            # total number of non-zero terms1

            plt.figure(figsize=FIG_SIZE)
            num_non_zeros = [len((coefs_enet[i_component, abs(coefs_enet[i_component, :, ii]) >0*np.max(abs(coefs_enet[i_component,:,ii])), ii]))
                             for ii in range(coefs_enet.shape[2])]
            plt.plot(alphas_enet_log_negative, num_non_zeros , 'k^-')
            plt.xlabel(r'-$\log_{10}(\alpha)$',fontsize = 32)
            plt.ylabel('number of selected features',fontsize = 32)
            lgd = plt.legend(bbox_to_anchor=(1, 0.5))
            plt.savefig(self.pps_dir + '/multi-elastic-net-coef-non-zeros-' + str(i_component+1) + '.png',
                        bbox_extra_artists=(lgd,),
                        bbox_inches='tight')
            plt.close()


        num_non_zero_all_alpha = []

        for ii in range(coefs_enet.shape[2]):

            non_zero_index_per_alpha = []
            for i_component in range(num_target_components):
                # non_zero_index_per_alpha_per_target = abs(coefs_enet[i_component, :, ii]) > 0
                non_zero_index_per_alpha_per_target = abs(coefs_enet[i_component, :, ii]) > 0*np.max(abs(coefs_enet[i_component, :, ii]))
                non_zero_index_per_alpha.append(non_zero_index_per_alpha_per_target)
            non_zero_index_per_alpha_all_targets = np.logical_or.reduce(non_zero_index_per_alpha)
            num_non_zero_all_alpha.append(np.sum(non_zero_index_per_alpha_all_targets))

        num_non_zero_all_alpha = np.array(num_non_zero_all_alpha)

        # total residual vs alpha AND number of non-zero modes vs alpha

        fig=plt.figure(figsize=FIG_SIZE)
        ax1 = fig.add_subplot(111)
        ax2 = ax1.twinx()
        ax1.plot(alphas_enet_log_negative, residual_array, 'k*-')
        ax1.set_xlabel(r'-$\log_{10}(\alpha)$',fontsize = 32)
        ax1.set_ylabel('normalized reconstruction MSE',color='k',fontsize = 32)
        # ax1.set_yscale('log')

        ax2.plot(alphas_enet_log_negative, num_non_zero_all_alpha,'r*-')
        ax2.set_ylabel('number of selected features',color='r',fontsize = 32)
        lgd = plt.legend(bbox_to_anchor=(1, 0.5))
        plt.savefig(self.pps_dir + '/multi-elastic-net-mse.png',
                    bbox_extra_artists=(lgd,),
                    bbox_inches='tight')
        plt.close()
# In[70]:

freqs = r[0]
vols = r[1:]
ls = [1.53e-3] * 33
ls = np.round(np.cumsum(ls), 5)

# In[104]:

plt.close('all')
plt.figure(figsize=(10, 10))
X, Y = np.meshgrid(freqs, ls)
plt.contourf(X,
             Y,
             np.abs(vols),
             locator=ticker.LogLocator(base=2),
             cmap=plt.cm.YlGnBu_r)
plt.xlabel("frequency")
plt.ylabel('distance')
plt.colorbar()
plt.show()

# In[98]:

plt.close('all')
#plt.figure(figsize=[10,10])
#plt.plot(vs_mat[1,:])
#plt.show()

# In[90]:
Example #28
0
    def plot_surface(
        self,
        surf,
        minvalue=None,
        maxvalue=None,
        contourlevels=None,
        xlabelrotation=None,
        colormap=None,
        logarithmic=False,
    ):  # pylint: disable=too-many-statements
        """Input a surface and plot it."""

        # need a deep copy to avoid changes in the original surf

        logger.info("The key contourlevels %s is not in use", contourlevels)

        usesurf = surf.copy()
        if usesurf.yflip < 0:
            usesurf.swapaxes()

        if abs(surf.rotation) > 0.001:
            usesurf.unrotate()

        xi, yi, zi = usesurf.get_xyz_values()

        zimask = ma.getmaskarray(zi).copy()  # yes need a copy!

        legendticks = None
        if minvalue is not None and maxvalue is not None:
            minv = float(minvalue)
            maxv = float(maxvalue)

            step = (maxv - minv) / 10.0
            legendticks = []
            for i in range(10 + 1):
                llabel = float("{0:9.4f}".format(minv + step * i))
                legendticks.append(llabel)

            zi.unshare_mask()
            zi[zi < minv] = minv
            zi[zi > maxv] = maxv

            # need to restore the mask:
            zi.mask = zimask

            # note use surf.min, not usesurf.min here ...
            notetxt = ("Note: map values are truncated from [" +
                       str(surf.values.min()) + ", " + str(surf.values.max()) +
                       "] " + "to interval [" + str(minvalue) + ", " +
                       str(maxvalue) + "]")

            self._fig.text(0.99,
                           0.02,
                           notetxt,
                           ha="right",
                           va="center",
                           fontsize=8)

        logger.info("Legendticks: %s", legendticks)

        if minvalue is None:
            minvalue = usesurf.values.min()

        if maxvalue is None:
            maxvalue = usesurf.values.max()

        # this will override current instance colormap locally, and is
        # therefore reset afterwards
        keepcolor = self.colormap
        if colormap is not None:
            self.colormap = colormap

        levels = np.linspace(minvalue, maxvalue, self.contourlevels)
        logger.debug("Number of contour levels: %s", levels)

        plt.setp(self._ax.xaxis.get_majorticklabels(), rotation=xlabelrotation)

        # zi = ma.masked_where(zimask, zi)
        # zi = ma.masked_greater(zi, _cxtgeo.UNDEF_LIMIT)

        if ma.std(zi) > 1e-07:
            uselevels = levels
        else:
            uselevels = 1

        try:
            if logarithmic is False:
                locator = None
                ticks = legendticks
                im = self._ax.contourf(xi,
                                       yi,
                                       zi,
                                       uselevels,
                                       locator=locator,
                                       cmap=self.colormap)

            else:
                logger.info("use LogLocator")
                locator = ticker.LogLocator()
                ticks = None
                uselevels = None
                im = self._ax.contourf(xi,
                                       yi,
                                       zi,
                                       locator=locator,
                                       cmap=self.colormap)

            self._fig.colorbar(im, ticks=ticks)
        except ValueError as err:
            logger.warning("Could not make plot: %s", err)

        plt.gca().set_aspect("equal", adjustable="box")
        self.colormap = keepcolor
Example #29
0
def parameter_variation(m,
                        sh,
                        thing_to_vary,
                        thing_to_divide_by,
                        factors,
                        num_points,
                        draw_plot=True):
    """
    Explore the effect of varying different parameters on the upconversion yield of the acceptor.

    Parameters
    ----------
    m : tripletpairs.kineticmodelling.steadystatemodels.Merrifield or tripletpairs.kineticmodelling.steadystatemodels.MerrifieldExplicit1TT
        A pre-prepared instance of either :class:`tripletpairs.kineticmodelling.steadystatemodels.Merrifield` or :class:`tripletpairs.kineticmodelling.steadystatemodels.MerrifieldExplicit1TT`.
    sh : tripletpairs.spin.SpinHamiltonian
        A pre-prepared instance of :class:`tripletpairs.spin.SpinHamiltonian`.
    thing_to_vary : str
        The name of the rate constant to vary.
    thing_to_divide_by : str or None
        The name of the rate constant to normalise to, if desired.
    factors : 2-tuple of float
        Rate constant will be varied geometrically between its starting value divided by the first entry in factors and its starting value multiplied by the second entry in factors.
    num_points : int
        Number of rate constant values to sample.
    draw_plot : bool, optional
        Whether to draw a plot of the result. The default is True.

    Raises
    ------
    TypeError
        If the model given is invalid.
    ValueError
        If either of the given parameters is invalid.

    Returns
    -------
    rates : numpy.ndarray
        The rate constant values of thing_to_vary, note that these have not been divided by anything.
    ucy_actual : numpy.ndarray
        The upconversion yield as a function of rates.
    ucy_nospin : numpy.ndarray
        The upconversion yield as a function of rates, assuming no spin statistical effects.

    """
    if (m.model_name not in ['Merrifield', 'MerrifieldExplicit1TT'
                             ]) or (m._time_resolved):
        raise TypeError('invalid model')

    m.initial_weighting = {'T1': 1}

    ucy_nospin = np.zeros(num_points)
    ucy_actual = np.zeros(num_points)

    if thing_to_vary not in m.rates:
        if thing_to_vary not in ['G', 'J']:
            raise ValueError('invalid thing_to_vary')
    if thing_to_divide_by is not None:
        if thing_to_divide_by not in m.rates:
            raise ValueError('invalid thing_to_divide_by')
        elif thing_to_vary in ['G', 'J']:
            raise ValueError(
                'thing_to_divide_by must be None if thing_to_vary is G or J')

    if thing_to_vary == 'J':
        vars_object = sh
    else:
        vars_object = m

    orig = vars(vars_object)[thing_to_vary]

    rates = np.geomspace(
        vars(vars_object)[thing_to_vary] / factors[0],
        vars(vars_object)[thing_to_vary] * factors[1], num_points)
    for i, rate in enumerate(rates):

        vars(vars_object)[thing_to_vary] = rate

        sh.calculate_everything()
        m.cslsq = sh.cslsq
        m.simulate()
        ucy0 = 2 * m.kSNR * m.S1 / m.G

        m.cslsq = np.ones(9) / 9
        m.simulate()
        ucy1 = 2 * m.kSNR * m.S1 / m.G

        ucy_nospin[i] = 100 * ucy1
        ucy_actual[i] = 100 * ucy0

    if draw_plot:

        rate_labels = {
            'kSF': 'Forwards SF Rate',
            'k_SF': 'Backwards SF Rate',
            'kHOP': 'Fowards Hop Rate',
            'k_HOP': 'Backwards Hop Rate',
            'kHOP2': 'Spin Loss Rate',
            'kDISS': 'Spin Loss Rate',
            'kTTA': 'TTA Rate',
            'kTTNR': r'$^1$(TT) Decay Rate',
            'kTNR': 'Triplet Decay Rate',
            'kSNR': 'Singlet Decay Rate',
            'G': 'Generation Rate',
            'J': 'Exchange Energy'
        }

        if thing_to_divide_by is None:
            x = rates
            vline = orig
            xlabel_text = rate_labels[thing_to_vary]
            if thing_to_vary == 'kTTA':
                xlabel_unit = r' (nm$^3$ns$^{-1}$)'
            elif thing_to_vary == 'G':
                xlabel_unit = r' (nm$^{-3}$ns$^{-1}$)'
            elif thing_to_vary == 'J':
                xlabel_unit = r' ($\mu$eV)'
            else:
                xlabel_unit = r' (ns$^{-1}$)'
        else:
            x = rates / vars(vars_object)[thing_to_divide_by]
            vline = orig / vars(vars_object)[thing_to_divide_by]
            xlabel_text = rate_labels[thing_to_vary] + '/' + rate_labels[
                thing_to_divide_by]
            if thing_to_vary == 'kTTA':
                xlabel_unit = r' (nm$^3$)'
            elif thing_to_divide_by == 'kTTA':
                xlabel_unit = r' (nm$^{-3}$)'
            else:
                xlabel_unit = ''

        fig, ax1 = plt.subplots(figsize=(5, 4))

        ax1.semilogx(x, ucy_nospin, 'b--', label='loss')
        ax1.semilogx(x, ucy_actual, 'b-', label='loss')
        ax1.set_ylim([0, 100])
        ax1.set_xlabel(xlabel_text + xlabel_unit, fontsize=20)
        ax1.set_ylabel('Upconversion Yield (%)', fontsize=20, color='b')
        ax1.tick_params(axis='y', labelcolor='b')

        ax2 = ax1.twinx()
        gain = 100 * (ucy_nospin - ucy_actual) / ucy_actual
        ax2.semilogx(x, gain, 'r:')
        ax2.set_ylim([0, 1.1 * max(gain)])
        ax2.set_ylabel('Potential Gain (%)', fontsize=20, color='r')
        ax2.tick_params(axis='y', labelcolor='r')

        ax1.xaxis.set_major_locator(mticker.LogLocator(numticks=12))
        ax1.xaxis.set_minor_locator(
            mticker.LogLocator(subs=np.linspace(0.1, 0.9, 9), numticks=12))
        ax1.set_xlim([min(x), max(x)])
        ax1.axvline(vline, color='k', linestyle=':', linewidth=1, alpha=0.5)

        for ax in [ax1, ax2]:
            ax.tick_params(axis='both',
                           which='major',
                           labelsize=20,
                           width=1.4,
                           length=6)
            ax.tick_params(axis='both',
                           which='minor',
                           labelsize=20,
                           width=1.4,
                           length=3)
            for axis in ['top', 'bottom', 'left', 'right']:
                ax.spines[axis].set_linewidth(1.4)

        vars(vars_object)[thing_to_vary] = orig

    return rates, ucy_actual, ucy_nospin
Example #30
0
def histogram_1d(data,
                 nbins=None,
                 l_adjust_bins=False,
                 l_xlog=False,
                 x_label='',
                 y_label='',
                 legend_label=[],
                 l_color=True,
                 l_percentage=True,
                 l_rel_mode=False,
                 l_pope=False):
    """Probability distributions for multiple variables in a xarray-dataset."""

    fig, ax = plt.subplots(figsize=(7 * 0.8, 5 * 0.8))
    linestyle = [
        'solid', 'dashed', 'dotted', (0, (1, 1)), (0, (3, 5, 1, 5)),
        (0, (3, 1, 1, 1, 1, 1))
    ]
    color = [
        col.sol['magenta'], col.sol['blue'], 'k', col.sol['green'],
        col.sol['red'], col.sol['magenta'], col.sol['cyan']
    ]
    lw = [1., 2., 2., 2., 2., 2.]

    for i, var in enumerate(data):

        # var = dataset[variable]
        if type(nbins) == int:
            bins = np.linspace(start=var.min(), stop=var.max(),
                               num=nbins + 1)  # 50
        else:
            if l_adjust_bins:
                bins = np.linspace(start=m.sqrt(max(0, var.min())),
                                   stop=m.sqrt(var.max()),
                                   num=20)**2
            else:
                bins = nbins[i]

        # sns.distplot(var[var.notnull()], bins=bins, kde=False, norm_hist=True)  # hist_kws={'log': True})

        total = var.notnull().sum().values
        # metric_clean = var.fillna(-1)  # works if var is positive and thus bins as well
        metric_clean = var.where(
            var.notnull(),
            drop=True)  # works if var is positive and thus bins as well
        h, edges = np.histogram(metric_clean, bins=bins)  # , density=True)

        if l_rel_mode:
            total = h.max()

        bin_centre = 0.5 * (edges[1:] + edges[:-1])
        dx = edges[1:] - edges[:-1]
        dlogx = dx / (bin_centre * m.log(10, m.e))

        if l_xlog:
            h_normed = h / dlogx / total  # equals density=True
        else:
            if l_percentage:
                h_normed = h / total * 100
            else:
                h_normed = h / dx / total  # equals density=True

        if l_color:
            plt.plot(bin_centre,
                     h_normed,
                     linestyle='-',
                     marker='o',
                     color=color[i],
                     linewidth=lw[i])
        else:
            h_normed_ext = np.zeros(shape=len(h_normed) + 1)
            h_normed_ext[0] = h_normed[0]
            h_normed_ext[1:] = h_normed
            # plot a step function instead of a continuous line
            h_to_plot = h_normed_ext
            # h_to_plot = np.cumsum(h_normed_ext)
            plt.step(edges, h_to_plot, color=color[i],
                     linewidth=2.)  #, linestyle=linestyle[i])

    if l_xlog:
        plt.xscale('log')

        x_major = ticker.LogLocator(base=10.0, numticks=10)
        ax.xaxis.set_major_locator(x_major)
        x_minor = ticker.LogLocator(base=10.0,
                                    subs=np.arange(1.0, 10.0) * 0.1,
                                    numticks=20)
        ax.xaxis.set_minor_locator(x_minor)
        ax.xaxis.set_minor_formatter(ticker.NullFormatter())

    plt.ylabel(y_label)
    plt.xlabel(x_label)  #, **font)
    if len(legend_label) != 0:
        lg = plt.legend(legend_label, fontsize=14)
        # this sets only the legend background color to transparent (not the surrounding box)
        lg.get_frame().set_facecolor('none')

    if l_pope:
        ax.set_xticks([10, 30, 50, 70, 90], minor=True)
        ax.grid(b=True, which='both', axis='x')

    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)

    if not l_pope:
        ax.xaxis.set_major_formatter(ticker.ScalarFormatter())
        ax.xaxis.set_major_formatter(
            ticker.FuncFormatter(lambda y, _: '{:g}'.format(y)))
        ax.tick_params(axis='x', length=8)
        ax.spines['bottom'].set_position('zero')
        ax.tick_params(axis='x', direction='out')
        # ax.xaxis.set_ticks_position('none')  # 'left', 'right'
        # ax.set_xlim(6)

    ax.tick_params(axis='y', direction='out')
    ax.yaxis.set_ticks_position('none')  # 'left', 'right'

    return fig