Example #1
0
class PolarAffine(mtransforms.Affine2DBase):
    """
    The affine part of the polar projection.  Scales the output so
    that maximum radius rests on the edge of the axes circle.
    """
    def __init__(self, scale_transform, limits):
        """
        *limits* is the view limit of the data.  The only part of
        its bounds that is used is the y limits (for the radius limits).
        The theta range is handled by the non-affine transform.
        """
        mtransforms.Affine2DBase.__init__(self)
        self._scale_transform = scale_transform
        self._limits = limits
        self.set_children(scale_transform, limits)
        self._mtx = None

    __str__ = mtransforms._make_str_method("_scale_transform", "_limits")

    def get_matrix(self):
        # docstring inherited
        if self._invalid:
            limits_scaled = self._limits.transformed(self._scale_transform)
            yscale = limits_scaled.ymax - limits_scaled.ymin
            affine = mtransforms.Affine2D() \
                .scale(0.5 / yscale) \
                .translate(0.5, 0.5)
            self._mtx = affine.get_matrix()
            self._inverted = None
            self._invalid = 0
        return self._mtx
Example #2
0
class _WedgeBbox(mtransforms.Bbox):
    """
    Transform (theta, r) wedge Bbox into axes bounding box.

    Parameters
    ----------
    center : (float, float)
        Center of the wedge
    viewLim : `~matplotlib.transforms.Bbox`
        Bbox determining the boundaries of the wedge
    originLim : `~matplotlib.transforms.Bbox`
        Bbox determining the origin for the wedge, if different from *viewLim*
    """
    def __init__(self, center, viewLim, originLim, **kwargs):
        mtransforms.Bbox.__init__(self, [[0, 0], [1, 1]], **kwargs)
        self._center = center
        self._viewLim = viewLim
        self._originLim = originLim
        self.set_children(viewLim, originLim)

    __str__ = mtransforms._make_str_method("_center", "_viewLim", "_originLim")

    def get_points(self):
        # docstring inherited
        if self._invalid:
            points = self._viewLim.get_points().copy()
            # Scale angular limits to work with Wedge.
            points[:, 0] *= 180 / np.pi
            if points[0, 0] > points[1, 0]:
                points[:, 0] = points[::-1, 0]

            # Scale radial limits based on origin radius.
            points[:, 1] -= self._originLim.y0

            # Scale radial limits to match axes limits.
            rscale = 0.5 / points[1, 1]
            points[:, 1] *= rscale
            width = min(points[1, 1] - points[0, 1], 0.5)

            # Generate bounding box for wedge.
            wedge = mpatches.Wedge(self._center,
                                   points[1, 1],
                                   points[0, 0],
                                   points[1, 0],
                                   width=width)
            self.update_from_path(wedge.get_path())

            # Ensure equal aspect ratio.
            w, h = self._points[1] - self._points[0]
            deltah = max(w - h, 0) / 2
            deltaw = max(h - w, 0) / 2
            self._points += np.array([[-deltaw, -deltah], [deltaw, deltah]])

            self._invalid = 0

        return self._points
Example #3
0
class _ThetaShift(mtransforms.ScaledTranslation):
    """
    Apply a padding shift based on axes theta limits.

    This is used to create padding for radial ticks.

    Parameters
    ----------
    axes : `~matplotlib.axes.Axes`
        The owning axes; used to determine limits.
    pad : float
        The padding to apply, in points.
    mode : {'min', 'max', 'rlabel'}
        Whether to shift away from the start (``'min'``) or the end (``'max'``)
        of the axes, or using the rlabel position (``'rlabel'``).
    """
    def __init__(self, axes, pad, mode):
        mtransforms.ScaledTranslation.__init__(self, pad, pad,
                                               axes.figure.dpi_scale_trans)
        self.set_children(axes._realViewLim)
        self.axes = axes
        self.mode = mode
        self.pad = pad

    __str__ = mtransforms._make_str_method("axes", "pad", "mode")

    def get_matrix(self):
        if self._invalid:
            if self.mode == 'rlabel':
                angle = (
                    np.deg2rad(self.axes.get_rlabel_position()) *
                    self.axes.get_theta_direction() +
                    self.axes.get_theta_offset()
                )
            else:
                if self.mode == 'min':
                    angle = self.axes._realViewLim.xmin
                elif self.mode == 'max':
                    angle = self.axes._realViewLim.xmax

            if self.mode in ('rlabel', 'min'):
                padx = np.cos(angle - np.pi / 2)
                pady = np.sin(angle - np.pi / 2)
            else:
                padx = np.cos(angle + np.pi / 2)
                pady = np.sin(angle + np.pi / 2)

            self._t = (self.pad * padx / 72, self.pad * pady / 72)
        return mtransforms.ScaledTranslation.get_matrix(self)
Example #4
0
class PolarTransform(mtransforms.Transform):
    """
    The base polar transform.  This handles projection *theta* and
    *r* into Cartesian coordinate space *x* and *y*, but does not
    perform the ultimate affine transformation into the correct
    position.
    """
    input_dims = output_dims = 2

    def __init__(self, axis=None, use_rmin=True,
                 _apply_theta_transforms=True):
        mtransforms.Transform.__init__(self)
        self._axis = axis
        self._use_rmin = use_rmin
        self._apply_theta_transforms = _apply_theta_transforms

    __str__ = mtransforms._make_str_method(
        "_axis",
        use_rmin="_use_rmin",
        _apply_theta_transforms="_apply_theta_transforms")

    def transform_non_affine(self, tr):
        # docstring inherited
        t, r = np.transpose(tr)
        # PolarAxes does not use the theta transforms here, but apply them for
        # backwards-compatibility if not being used by it.
        if self._apply_theta_transforms and self._axis is not None:
            t *= self._axis.get_theta_direction()
            t += self._axis.get_theta_offset()
        if self._use_rmin and self._axis is not None:
            r = (r - self._axis.get_rorigin()) * self._axis.get_rsign()
        r = np.where(r >= 0, r, np.nan)
        return np.column_stack([r * np.cos(t), r * np.sin(t)])

    def transform_path_non_affine(self, path):
        # docstring inherited
        vertices = path.vertices
        if len(vertices) == 2 and vertices[0, 0] == vertices[1, 0]:
            return mpath.Path(self.transform(vertices), path.codes)
        ipath = path.interpolated(path._interpolation_steps)
        return mpath.Path(self.transform(ipath.vertices), ipath.codes)

    def inverted(self):
        # docstring inherited
        return PolarAxes.InvertedPolarTransform(self._axis, self._use_rmin,
                                                self._apply_theta_transforms)
Example #5
0
class InvertedPolarTransform(mtransforms.Transform):
    """
    The inverse of the polar transform, mapping Cartesian
    coordinate space *x* and *y* back to *theta* and *r*.
    """
    input_dims = output_dims = 2

    def __init__(self, axis=None, use_rmin=True,
                 _apply_theta_transforms=True):
        mtransforms.Transform.__init__(self)
        self._axis = axis
        self._use_rmin = use_rmin
        self._apply_theta_transforms = _apply_theta_transforms

    __str__ = mtransforms._make_str_method(
        "_axis",
        use_rmin="_use_rmin",
        _apply_theta_transforms="_apply_theta_transforms")

    def transform_non_affine(self, xy):
        # docstring inherited
        x, y = xy.T
        r = np.hypot(x, y)
        theta = (np.arctan2(y, x) + 2 * np.pi) % (2 * np.pi)
        # PolarAxes does not use the theta transforms here, but apply them for
        # backwards-compatibility if not being used by it.
        if self._apply_theta_transforms and self._axis is not None:
            theta -= self._axis.get_theta_offset()
            theta *= self._axis.get_theta_direction()
            theta %= 2 * np.pi
        if self._use_rmin and self._axis is not None:
            r += self._axis.get_rorigin()
            r *= self._axis.get_rsign()
        return np.column_stack([theta, r])

    def inverted(self):
        # docstring inherited
        return PolarAxes.PolarTransform(self._axis, self._use_rmin,
                                        self._apply_theta_transforms)