def uniform_motif(N, L, desired_ic, epsilon=0.1, beta=None, ps=None, count_sampler=None, verbose=False): if verbose: print "uniform motif accept reject:", N, L, desired_ic, beta correction_per_col = 3 / (2 * log(2) * N) desired_ic_for_beta = desired_ic + L * correction_per_col if desired_ic_for_beta == 2 * L: # if we reach the upper limit, things break down cols = [sample_col_from_count((0, 0, 0, N)) for _ in range(L)] motif_p = map(lambda site: "".join(site), transpose(cols)) return motif_p if beta is None: beta = find_beta_for_mean_motif_ic(N, L, desired_ic_for_beta) if verbose: print "beta:", beta if ps is None: ps = count_ps_from_beta(N, beta) if count_sampler is None: count_sampler = inverse_cdf_sampler(enumerate_counts(N), ps) def rQ_raw(): counts = [count_sampler() for i in range(L)] cols = [sample_col_from_count(count) for count in counts] motif_p = map(lambda site: "".join(site), transpose(cols)) return motif_p def rQ(): return sample_until(lambda M: inrange(M, desired_ic, epsilon), rQ_raw, 1, progress_bar=False)[0] def dQhat(motif): return exp(beta * motif_ic(motif)) Imin = desired_ic - epsilon Imax = desired_ic + epsilon log_M = -beta * Imin if verbose: print "Imin, Imax, log_M:", Imin, Imax, log_M def dQ(motif): return exp(beta * motif_ic(motif) + log_M) def AR(motif): return 1.0 / dQ(motif) #M = exp(-beta*(desired_ic - epsilon)) # which ic? +/- correction trials = 0 while True: trials += 1 motif = rQ() r = random.random() if r < AR(motif): return motif if verbose and trials % 100 == 0: print trials, AR(motif)
def uniform_motifs(N, L, desired_ic, num_motifs, epsilon=0.1, beta=None, verbose=False): if beta is None: correction_per_col = 3 / (2 * log(2) * N) desired_ic_for_beta = desired_ic + L * correction_per_col beta = find_beta_for_mean_motif_ic(N, L, desired_ic_for_beta, verbose=verbose) ps = count_ps_from_beta(N, beta) count_sampler = inverse_cdf_sampler(enumerate_counts(N), ps) return [ uniform_motif(N, L, desired_ic, epsilon=epsilon, beta=beta, ps=ps, count_sampler=count_sampler, verbose=verbose) for i in trange(num_motifs) ]
def uniform_motifs(N,L,desired_ic,num_motifs,epsilon=0.1,beta=None,verbose=False): if beta is None: correction_per_col = 3/(2*log(2)*N) desired_ic_for_beta = desired_ic + L * correction_per_col beta = find_beta_for_mean_motif_ic(N,L,desired_ic_for_beta,verbose=verbose) ps = count_ps_from_beta(N,beta) count_sampler = inverse_cdf_sampler(enumerate_counts(N),ps) return [uniform_motif(N,L,desired_ic,epsilon=epsilon,beta=beta, ps=ps,count_sampler=count_sampler,verbose=verbose) for i in trange(num_motifs)]
def uniform_motif(N,L,desired_ic,epsilon=0.1,beta=None,ps=None,count_sampler=None,verbose=False): if verbose: print "uniform motif accept reject:",N,L,desired_ic,beta correction_per_col = 3/(2*log(2)*N) desired_ic_for_beta = desired_ic + L * correction_per_col if desired_ic_for_beta == 2*L: # if we reach the upper limit, things break down cols = [sample_col_from_count((0,0,0,N)) for _ in range(L)] motif_p = map(lambda site:"".join(site),transpose(cols)) return motif_p if beta is None: beta = find_beta_for_mean_motif_ic(N,L,desired_ic_for_beta) if verbose: print "beta:",beta if ps is None: ps = count_ps_from_beta(N,beta) if count_sampler is None: count_sampler = inverse_cdf_sampler(enumerate_counts(N),ps) def rQ_raw(): counts = [count_sampler() for i in range(L)] cols = [sample_col_from_count(count) for count in counts] motif_p = map(lambda site:"".join(site),transpose(cols)) return motif_p def rQ(): return sample_until(lambda M:inrange(M,desired_ic,epsilon),rQ_raw,1,progress_bar=False)[0] def dQhat(motif): return exp(beta*motif_ic(motif)) Imin = desired_ic - epsilon Imax = desired_ic + epsilon log_M = -beta*Imin if verbose: print "Imin, Imax, log_M:",Imin, Imax, log_M def dQ(motif): return exp(beta*motif_ic(motif) + log_M) def AR(motif): return 1.0/dQ(motif) #M = exp(-beta*(desired_ic - epsilon)) # which ic? +/- correction trials = 0 while True: trials +=1 motif = rQ() r = random.random() if r < AR(motif): return motif if verbose and trials % 100 == 0: print trials, AR(motif)