def _breadth_first_search(self, start, end): """ Solves a maze using breadth-first search. :param start: tuple with start coordinates :param end: tuple with end coordinates :return: None """ visited = self.maze.copy( ) # List of visited cells, value of visited cell is 0 queue = collections.deque() # List of cells [cell, ...] cell = utils.stack_empty( ) # Tuple of current cell with according stack ((x, y), stack) x, y = start cell = utils.stack_push(cell, (x, y)) queue.append(cell) visited[x, y, 0] = 0 # Mark as visited while queue: self._enqueue(queue, visited) if queue[0][0] == end: # Stop if end has been found cell = utils.stack_push(queue[0], end) # Push end into cell return utils.draw_path(self.solution, utils.stack_deque(cell)) raise utils.MazeError("No solution found.")
def _enqueue(self, queue, visited): """Queues next cells.""" cell = queue.popleft() x, y = cell[0] for idx in range(4): # Check adjacent cells bx, by = self._dir_one[idx](x, y) if visited[bx, by, 0] == 255: # Check if unvisited tx, ty = self._dir_two[idx](x, y) visited[bx, by, 0] = visited[tx, ty, 0] = 0 # Mark as visited queue.append(utils.stack_push(cell, (tx, ty)))