Example #1
0
def test_adding_pes_data_with_qcjson():
    dset = data.dataSet(f'{dset_dir}/6h2o/6h2o.temelso.etal-dset-no.data.npz')
    dset_ref = data.dataSet(f'{dset_dir}/6h2o/6h2o.temelso.etal-dset.npz')

    dset.add_pes_json(
        './tests/data/engrads/h2o/6h2o/6h2o.temelso.etal',
        'MP2/def2-TZVP', 'kcal/mol', 'hartree', allow_remaining_nan=False
    )
    assert np.array_equal(dset_ref.E, dset.E)
    assert np.array_equal(dset_ref.F, dset.F)
Example #2
0
def test_sample_dset_same_size():
    """
    """
    dset_h2o_2body_path = f'{dset_dir}/2h2o/140h2o.sphere.gfn2.md.500k.prod1.3h2o.dset.2h2o-dset.mb.npz'

    dset_h2o_2body = data.dataSet(dset_h2o_2body_path)
    
    # Trim dset_h2o_2body to 50 structures
    remaining = 50
    for key in ['r_prov_specs', 'E', 'R', 'F']:
        setattr(dset_h2o_2body, key, getattr(dset_h2o_2body, key)[:remaining])

    dset_h2o_2body_cm_6 = data.dataSet()
    dset_h2o_2body_cm_6.name = '140h2o.sphere.gfn2.md.500k.prod1.3h2o.dset.2h2o-dset.mb-cm.6'
    dset_h2o_2body_cm_6 = dset_sample_structures(
        dset_h2o_2body_cm_6, dset_h2o_2body, 'all', 2, criteria.cm_distance_sum,
        np.array([]), np.array([6.0]), True, False
    )

    assert dset_h2o_2body_cm_6.theory == 'mp2.def2tzvp.frozencore'
    assert dset_h2o_2body_cm_6.criteria == 'cm_distance_sum'
    assert np.array_equal(dset_h2o_2body_cm_6.z_slice, np.array([]))
    assert np.array_equal(dset_h2o_2body_cm_6.cutoff, np.array([6.0]))
    assert np.array_equal(dset_h2o_2body_cm_6.entity_ids, np.array([0, 0, 0, 1, 1, 1]))
    assert np.array_equal(
        dset_h2o_2body_cm_6.comp_ids, np.array(['h2o', 'h2o'])
    )
    assert dset_h2o_2body_cm_6.centered == True
    assert dset_h2o_2body_cm_6.r_unit == 'Angstrom'
    # 8726c482c19cdf7889cd1e62b9e9c8e1 is the MD5 has for the full 140h2o rset.
    assert dset_h2o_2body_cm_6.r_prov_ids == {0: '8726c482c19cdf7889cd1e62b9e9c8e1'}

    assert np.array_equal(dset_h2o_2body_cm_6.z, np.array([8, 1, 1, 8, 1, 1]))
    rset = data.structureSet(rset_path_140h2o)
    check_R_with_rset(dset_h2o_2body_cm_6, rset, True)

    # Checking energies and forces.
    dset_r_prov_specs = dset_h2o_2body_cm_6.r_prov_specs
    dset_E = dset_h2o_2body_cm_6.E
    dset_F = dset_h2o_2body_cm_6.F
    dset_sample_r_prov_specs = dset_h2o_2body.r_prov_specs
    dset_sample_E = dset_h2o_2body.E
    dset_sample_F = dset_h2o_2body.F
    for i_r in range(len(dset_h2o_2body_cm_6.R)):
        i_r_dset_sample = np.where(
            np.all(dset_sample_r_prov_specs == dset_r_prov_specs[i_r], axis=1)
        )[0][0]
        assert np.allclose(dset_E[i_r], dset_sample_E[i_r_dset_sample])
        assert np.allclose(dset_F[i_r], dset_sample_F[i_r_dset_sample])
Example #3
0
def test_rset_sampling_num_2mers_criteria():
    rset = trim_140h2o_rset()

    dset = data.dataSet()
    dset.name = '140h2o.sphere.gfn2.md.500k.prod1'
    dset = dset_sample_structures(
        dset, rset, 5, 2, criteria.cm_distance_sum,
        np.array([]), np.array([6.0]), True, False
    )
    
    assert isinstance(dset.criteria, str)
    assert dset.criteria in criteria.__dict__
    assert dset.z_slice.shape == (0,)
    assert dset.cutoff.shape == (1,)
    assert np.array_equal(dset.cutoff, np.array([6.]))

    assert dset.r_unit == 'Angstrom'
    assert np.array_equal(dset.z, np.array([8, 1, 1, 8, 1, 1]))
    assert dset.R.shape == (5, 6, 3)
    assert dset.E.shape == (5,)
    assert dset.F.shape == (5, 6, 3)

    assert dset.r_prov_ids == {0: 'e6a7a058b5fefb622fb3296e29a84150'}
    assert np.array_equal(dset.entity_ids, np.array([0, 0, 0, 1, 1, 1]))
    assert np.array_equal(dset.comp_ids, np.array(['h2o', 'h2o']))

    check_R_with_rset(dset, rset, True)
Example #4
0
def test_predictset_correct_contribution_predictions():
    """
    """
    dset_6h2o_path = f'{dset_dir}/6h2o/6h2o.temelso.etal-dset.npz'
    model_h2o_paths = [
        f'{model_dir}/140h2o.sphere.gfn2.md.500k.prod1.3h2o.dset.1h2o-model-train500.npz',
        f'{model_dir}/140h2o.sphere.gfn2.md.500k.prod1.3h2o.dset.2h2o.cm.6-model.mb-train500.npz',
        f'{model_dir}/140h2o.sphere.gfn2.md.500k.prod1.3h2o-model.mb-train500.npz',
    ]
    models = (
        dict(np.load(model_path, allow_pickle=True)) for model_path in model_h2o_paths
    )
    models = [
        gdmlModel(
            model, criteria_desc_func=cm_distance_sum,
            criteria_cutoff=model['cutoff']
        ) for model in models
    ]
    pset = data.predictSet()
    pset.load_dataset(dset_6h2o_path)
    pset.load_models(
        models, predict_gdml_decomp, use_ray=False
    )
    pset.prepare()
    E_pset, F_pset = pset.nbody_predictions([1, 2, 3])

    dset_6h2o = data.dataSet(dset_6h2o_path)
    mbe_pred = mbePredict(models, predict_gdml, use_ray=False)
    E_predict, F_predict = mbe_pred.predict(
        dset_6h2o.z, dset_6h2o.R, dset_6h2o.entity_ids, dset_6h2o.comp_ids,
        ignore_criteria=False
    )
    assert np.allclose(E_pset, E_predict)
    assert np.allclose(F_pset, F_predict)
Example #5
0
def test_rset_sampling_all_2mers_centering():
    rset = trim_140h2o_rset()

    dset = data.dataSet()
    dset.name = '140h2o.sphere.gfn2.md.500k.prod1'
    dset = dset_sample_structures(
        dset, rset, 'all', 2, None,
        np.array([]), np.array([]), False, False
    )
    centered_R = utils.center_structures(dset.z, dset.R)

    dset_centered = data.dataSet()
    dset_centered.name = '140h2o.sphere.gfn2.md.500k.prod1-centered'
    dset_centered = dset_sample_structures(
        dset_centered, rset, 'all', 2, None,
        np.array([]), np.array([]), True, False
    )

    assert np.allclose(centered_R, dset_centered.R)
Example #6
0
def test_sample_dset_1mers_multiple_rsets():
    """
    """
    dset_4h2o_lit_path = f'{dset_dir}/4h2o/4h2o.temelso.etal-dset.npz'

    dset_4h2o_lit_dset = data.dataSet(dset_4h2o_lit_path)
    
    # Sample all 1mers
    dset_1mers = data.dataSet()
    dset_1mers = dset_sample_structures(
        dset_1mers, dset_4h2o_lit_dset, 'all', 1, None,
        np.array([]), np.array([]), True, False
    )

    # Checking data set
    r_prov_specs = np.array([
        [0,0,0], [0,0,1], [0,0,2], [0,0,3], [1,0,0], [1,0,1], [1,0,2], [1,0,3],
        [2,0,0], [2,0,1], [2,0,2], [2,0,3]
    ])
    assert np.array_equal(dset_1mers.r_prov_specs, r_prov_specs)
    r_prov_ids = {0: '92dd31a90a3d2a443023d9d708010a4f', 1: '5593ef822ede64f6011ece82d6702ff9', 2: '33098027b401c38efcb5f05fa33c93ad'}
    assert dset_1mers.r_prov_ids == r_prov_ids
    assert np.array_equal(dset_1mers.entity_ids, np.array([0, 0, 0]))
    assert np.array_equal(dset_1mers.comp_ids, np.array(['h2o']))
    assert dset_1mers.centered == True
    assert dset_1mers.r_unit == 'Angstrom'
    assert np.array_equal(dset_1mers.z, np.array([8, 1, 1]))

    assert dset_1mers.R.shape == (12, 3, 3)
    r_3 = np.array([
        [-0.02947763, -0.0325826, -0.05004315],
        [ 0.93292237, 0.1104174, 0.10365685],
        [-0.46497763, 0.4068174, 0.69075685]
    ])
    assert np.allclose(dset_1mers.R[3], r_3)
    assert dset_1mers.E.shape == (12,)
    for e in dset_1mers.E:
        assert np.isnan(e)
    assert dset_1mers.F.shape == (12, 3, 3)
    for f in dset_1mers.F.flatten():
        assert np.isnan(f)
Example #7
0
def test_rset_sampling_all_2mers_normal():
    """Sampling all dimers (2mers) from trimmed 140h2o structure set.
    """
    rset = trim_140h2o_rset()

    ###   NORMAL SAMPLING   ###
    dset = data.dataSet()
    dset.name = '140h2o.sphere.gfn2.md.500k.prod1'
    dset = dset_sample_structures(
        dset, rset, 'all', 2, None,
        np.array([]), np.array([]), False, False
    )

    # Checking properties.
    assert dset.r_prov_ids == {0: 'e6a7a058b5fefb622fb3296e29a84150'}
    assert dset.r_prov_specs.shape == (30, 4)
    assert np.all(dset.r_prov_specs[:, :1] == np.zeros((30,)))
    assert np.all(
        dset.r_prov_specs[:, 1] == np.array(
            [0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
             1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
             2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
    )
    assert dset.r_prov_specs.shape == np.unique(dset.r_prov_specs, axis=0).shape
    assert np.all(dset.entity_ids == np.array([0, 0, 0, 1, 1, 1]))
    assert np.all(dset.comp_ids == np.array(['h2o', 'h2o']))
    assert np.all(dset.z == np.array([8, 1, 1, 8, 1, 1]))

    # Checking R.
    assert dset.R.shape == (30, 6, 3)
    r_prov_specs_r_check = np.array([0, 1, 1, 4])
    r_index = np.where(
        np.all(dset.r_prov_specs == r_prov_specs_r_check, axis=1)
    )[0][0]
    r_check = np.array([
        [-4.27804369, -3.56574992,  0.81519167],
        [-4.3569076,  -4.2647005,   0.1558876],
        [-4.35184085, -2.82879184,  0.39925437],
        [-2.44708832, -6.14572336, -3.36929742],
        [-2.18964657, -6.13868747, -2.48473228],
        [-2.64909444, -7.04677952, -3.60878085]
    ])
    assert np.allclose(dset.R[r_index], r_check)

    # Checking E.
    assert dset.E.shape == (30,)
    assert np.all(np.isnan(dset.E))

    # Checking F
    assert dset.F.shape == (30, 6, 3)
    assert np.all(np.isnan(dset.F))
Example #8
0
def test_1h2o_train_bayes_opt():
    try:
        import bayes_opt
    except ImportError:
        pytest.skip("bayesian-optimization package not installed")
    
    global glob
    if 'glob' in globals():
        del glob
    
    dset_path = os.path.join(
        dset_dir, '1h2o/140h2o.sphere.gfn2.md.500k.prod1.3h2o.dset.1h2o-dset.npz'
    )
    dset = dataSet(dset_path)

    train_dir_1h2o = os.path.join(train_dir, '1h2o/')
    train_idxs_path = os.path.join(train_dir_1h2o, 'train_idxs.npy')
    valid_idxs_path = os.path.join(train_dir_1h2o, 'valid_idxs.npy')
    train_idxs = np.load(train_idxs_path, allow_pickle=True)
    valid_idxs = np.load(valid_idxs_path, allow_pickle=True)

    n_train = 50
    n_valid = 100
    sigmas = [32, 42, 52]

    train = mbGDMLTrain(
        use_sym=True, use_E=True, use_E_cstr=False, use_cprsn=False,
        solver='analytic', lam=1e-15, solver_tol=1e-4, interact_cut_off=None
    )
    gp_params = {'init_points': 5, 'n_iter': 5, 'alpha': 0.001}
    model, optimizer = train.bayes_opt(
        dset,
        '1h2o',
        n_train,
        n_valid,
        sigma_bounds=(2, 100),
        save_dir='./tests/tmp/1h2o-bo',
        gp_params=gp_params,
        train_idxs=train_idxs,
        valid_idxs=valid_idxs,
        overwrite=True,
        write_json=True,
        write_idxs=True,
    )

    best_sig = model['sig'].item()
    assert 40 <= best_sig <= 50
    assert model['perms'].shape[0] == 2

    del train
Example #9
0
def test_rset_sampling_all_2mers_criteria():
    rset = trim_140h2o_rset()

    dset_centered = data.dataSet()
    dset_centered.name = '140h2o.sphere.gfn2.md.500k.prod1-centered'
    dset_centered = dset_sample_structures(
        dset_centered, rset, 'all', 2, None,
        np.array([]), np.array([]), True, False
    )

    dset_criteria = data.dataSet()
    dset_criteria.name = '140h2o.sphere.gfn2.md.500k.prod1-criteria'
    dset_criteria = dset_sample_structures(
        dset_criteria, rset, 'all', 2, criteria.cm_distance_sum,
        np.array([]), np.array([6.0]), True, False
    )

    r_prov_specs_accpetable_criteria = np.array([
        [0,0,0,3], [0,0,1,2], [0,0,1,4], [0,0,2,4], [0,1,0,3], [0,1,1,2],
        [0,1,1,4], [0,1,2,4], [0,2,0,3], [0,2,1,2], [0,2,1,4], [0,2,2,4]
    ])
    
    assert np.array_equal(dset_criteria.r_prov_specs, r_prov_specs_accpetable_criteria)
Example #10
0
def test_dset_sampling_all_2mers_after_3mers():
    rset = trim_140h2o_rset()

    dset = data.dataSet()
    dset.name = '140h2o.sphere.gfn2.md.500k.prod1'
    dset = dset_sample_structures(
        dset, rset, 'all', 3, None,
        np.array([]), np.array([]), True, False
    )

    dset_from_dset = data.dataSet()
    dset_from_dset = dset_sample_structures(
        dset_from_dset, dset, 'all', 2, criteria.cm_distance_sum,
        np.array([]), np.array([6.0]), True, False
    )

    assert np.array_equal(dset_from_dset.entity_ids, np.array([0, 0, 0, 1, 1, 1]))
    assert np.array_equal(
        dset_from_dset.comp_ids, np.array(['h2o', 'h2o'])
    )
    assert dset_from_dset.r_prov_ids == {0: 'e6a7a058b5fefb622fb3296e29a84150'}

    assert dset_from_dset.r_prov_specs.shape == (12, 4)
    # Same as test_rset_sampling_all_2mers_criteria, but organized to match
    # the 3mer then 2mer sampling.
    r_prov_specs_accpetable_criteria = np.array([
        [0,0,1,2], [0,0,0,3], [0,0,1,4], [0,0,2,4], [0,1,1,2], [0,1,0,3],
        [0,1,1,4], [0,1,2,4], [0,2,1,2], [0,2,0,3], [0,2,1,4], [0,2,2,4]
    ])
    assert np.array_equal(dset_from_dset.r_prov_specs, r_prov_specs_accpetable_criteria)
    
    assert dset_from_dset.R.shape == (12, 6, 3)
    assert dset_from_dset.E.shape == (12,)
    assert dset_from_dset.F.shape == (12, 6, 3)

    assert dset_from_dset.criteria == 'cm_distance_sum'
    assert np.array_equal(dset_from_dset.cutoff, np.array([6.0]))
Example #11
0
def test_1h2o_train_grid_search():
    global glob
    if 'glob' in globals():
        del glob
    
    dset_path = os.path.join(
        dset_dir, '1h2o/140h2o.sphere.gfn2.md.500k.prod1.3h2o.dset.1h2o-dset.npz'
    )
    dset = dataSet(dset_path)

    train_dir_1h2o = os.path.join(train_dir, '1h2o/')
    train_idxs_path = os.path.join(train_dir_1h2o, 'train_idxs.npy')
    valid_idxs_path = os.path.join(train_dir_1h2o, 'valid_idxs.npy')
    train_idxs = np.load(train_idxs_path, allow_pickle=True)
    valid_idxs = np.load(valid_idxs_path, allow_pickle=True)

    n_train = 50
    n_valid = 100
    sigmas = [32, 42, 52]

    train = mbGDMLTrain(
        use_sym=True, use_E=True, use_E_cstr=False, use_cprsn=False,
        solver='analytic', lam=1e-15, solver_tol=1e-4, interact_cut_off=None
    )
    model = train.grid_search(
        dset,
        '1h2o',
        n_train,
        n_valid,
        sigmas,
        train_idxs=train_idxs,
        valid_idxs=valid_idxs,
        write_json=True,
        write_idxs=True,
        overwrite=True,
        save_dir='./tests/tmp/1h2o-grid'
    )

    del train

    assert model['sig'].item() == 42
    assert np.allclose(
        np.array(model['f_err'].item()['rmse']), 0.4673520776718695,
        rtol=1e-05, atol=1e-08
    )
    assert model['perms'].shape[0] == 2
Example #12
0
def test_getting_test_idxs():
    dset_path = os.path.join(
        dset_dir, '1h2o/140h2o.sphere.gfn2.md.500k.prod1.3h2o.dset.1h2o-dset.npz'
    )
    model_path = os.path.join(
        './tests/data/models', '1h2o-model.npz'
    )
    dset = dataSet(dset_path)
    model = dict(np.load(model_path, allow_pickle=True))

    n_R = dset.n_R
    n_train = len(model['idxs_train'])
    n_valid = len(model['idxs_valid'])
    n_test = n_R - n_train - n_valid
    
    test_idxs = get_test_idxs(model, dset.asdict(), n_test=None)
    
    assert len(test_idxs) == n_test
Example #13
0
def test_rset_sampling_all_2mers_ignore_duplicate():
    rset = trim_140h2o_rset()
    dset = data.dataSet()
    dset.name = '140h2o.sphere.gfn2.md.500k.prod1'
    dset = dset_sample_structures(
        dset, rset, 'all', 2, None,
        np.array([]), np.array([]), False, False
    )

    dset_duplicate = dset_sample_structures(
        dset, rset, 'all', 2, None,
        np.array([]), np.array([]), False, False
    )
    assert dset_duplicate.r_prov_ids == {0: 'e6a7a058b5fefb622fb3296e29a84150'}
    assert dset_duplicate.r_prov_specs.shape == (30, 4)
    assert np.all(dset.entity_ids == np.array([0, 0, 0, 1, 1, 1]))
    assert np.all(dset.comp_ids == np.array(['h2o', 'h2o']))
    assert dset_duplicate.R.shape == (30, 6, 3)
Example #14
0
def test_1h2o_prob_indices():
    global glob
    if 'glob' in globals():
        del glob
    
    dset_path = os.path.join(
        dset_dir, '1h2o/140h2o.sphere.gfn2.md.500k.prod1.3h2o.dset.1h2o-dset.npz'
    )
    model_path = os.path.join(
        './tests/data/models', '1h2o-model.npz'
    )
    model = dict(np.load(model_path, allow_pickle=True))
    model = gdmlModel(
        model, criteria_desc_func=None,
        criteria_cutoff=None
    )
    dset = dataSet(dset_path)

    prob_s = prob_structures([model], predict_gdml)
    n_find = 100
    prob_idxs = prob_s.find(dset, n_find, save_dir='./tests/tmp')
    prob_idxs = np.sort(prob_idxs)

    ref = np.array(
        [ 
            465,   541,   653,   798,   807,   921,   953,  1058,  1240,
            1421,  1430,  1510,  1618,  1663,  1665,  1676,  1890,  2090,
            2123,  2218,  2246,  2665,  2944,  3171,  3225,  3485,  3510,
            3738,  3795,  3970,  3994,  4272,  4660,  5102,  5150,  5195,
            5230,  6394,  6471,  6787,  6900,  6961,  6986,  7257,  7725,
            7735,  7812,  7815,  8006,  8074,  8253,  8489,  8532,  8810,
            9169,  9221,  9226,  9667,  9668,  9728,  9747,  9919,  9952,
            9995, 10025, 10057, 10062, 10144, 10252, 10525, 10763, 10982,
            11005, 11012, 11024, 11404, 11730, 11745, 11747, 11864, 11970,
            12049, 12167, 12329, 12465, 12478, 12638, 12645, 12655, 12664,
            12775, 12878, 13062, 13151, 13192, 13320, 13343, 13546, 13676,
            13963
        ]
    )

    assert len(prob_idxs) == 100
    # This is a very bad test, but will work for now?
    assert len(np.setdiff1d(prob_idxs, ref)) < 20
Example #15
0
def test_rset_sampling_num_2mers_additional():
    rset = trim_140h2o_rset()

    dset = data.dataSet()
    dset.name = '140h2o.sphere.gfn2.md.500k.prod1'
    dset = dset_sample_structures(
        dset, rset, 5, 2, criteria.cm_distance_sum,
        np.array([]), np.array([6.0]), True, False
    )

    # Ensure energies and forces are not overwritten
    i_test = 1
    e_test = -47583.29857
    dset.E[i_test] = e_test
    f_test = np.array([
        [4.4, 2.8, 6.0],
        [-3.65, 34.0, 2.3],
        [4.4, 2.8, 6.0],
        [-3.65, 34.0, 2.3],
        [4.4, 2.8, 6.0],
        [-3.65, 34.0, 2.3],
    ])
    dset.F[i_test] = f_test

    dset = dset_sample_structures(
        dset, rset, 5, 2, criteria.cm_distance_sum,
        np.array([]), np.array([6.0]), True, False
    )

    assert dset.r_prov_ids == {0: 'e6a7a058b5fefb622fb3296e29a84150'}
    assert np.array_equal(dset.entity_ids, np.array([0, 0, 0, 1, 1, 1]))
    assert np.array_equal(dset.comp_ids, np.array(['h2o', 'h2o']))

    assert np.array_equal(dset.z, np.array([8, 1, 1, 8, 1, 1]))
    assert dset.R.shape == (10, 6, 3)
    assert dset.E.shape == (10,)
    assert np.allclose(dset.E[i_test], e_test)
    assert dset.F.shape == (10, 6, 3)
    assert np.allclose(dset.F[i_test], f_test)

    check_R_with_rset(dset, rset, True)
Example #16
0
def test_dset_default_attributes():
    dset = data.dataSet()

    assert isinstance(dset.r_prov_ids, dict)
    assert len(dset.r_prov_ids) == 0
    assert dset.r_prov_specs.shape == (1, 0)

    assert dset.criteria == ''
    assert dset.z_slice.shape == (0,)
    assert dset.cutoff.shape == (0,)

    assert dset.z.shape == (0,)
    assert dset.R.shape == (1, 1, 0)
    assert dset.E.shape == (0,)
    assert dset.F.shape == (1, 1, 0)

    assert dset.entity_ids.shape == (0,)
    assert dset.comp_ids.shape == (0,)

    try:
        dset.md5
    except AttributeError:
        pass
Example #17
0
def test_predict_single_16mer():
    """
    """
    dset_16h2o_path = f'{dset_dir}/16h2o/16h2o.yoo.etal.boat.b-dset-mp2.def2tzvp.npz'
    model_h2o_paths = [
        f'{model_dir}/140h2o.sphere.gfn2.md.500k.prod1.3h2o.dset.1h2o-model-train500.npz',
        f'{model_dir}/140h2o.sphere.gfn2.md.500k.prod1.3h2o.dset.2h2o.cm.6-model.mb-train500.npz',
        f'{model_dir}/140h2o.sphere.gfn2.md.500k.prod1.3h2o-model.mb-train500.npz',
    ]
    models = (dict(np.load(model_path, allow_pickle=True))
              for model_path in model_h2o_paths)
    models = [
        gdmlModel(model,
                  criteria_desc_func=cm_distance_sum,
                  criteria_cutoff=model['cutoff']) for model in models
    ]

    dset_16h2o = data.dataSet(dset_16h2o_path)
    mbe_pred = mbePredict(models, predict_gdml, use_ray=False)
    E_predict, F_predict = mbe_pred.predict(dset_16h2o.z,
                                            dset_16h2o.R,
                                            dset_16h2o.entity_ids,
                                            dset_16h2o.comp_ids,
                                            ignore_criteria=False)
    E = np.array([-766368.03399751])
    F = np.array([[[0.29906572, 0.14785963, 0.24781407],
                   [-0.30412644, -0.72411633, -0.11358761],
                   [-0.49192677, 0.86896897, -0.67525678],
                   [0.36627638, 1.02869105, -2.56223656],
                   [
                       -0.10503164,
                       -0.89234795,
                       0.9294424,
                   ], [
                       -0.1841222,
                       -0.14389019,
                       1.2193703,
                   ], [-1.38995634, 1.74512784, 0.20352509],
                   [0.50352734, -1.84912139, -1.11214437],
                   [
                       -0.45073645,
                       -0.58830104,
                       -0.0708215,
                   ], [-0.05824096, -0.07168296, 3.05363522],
                   [-0.21573588, 0.55601679, -0.93232724],
                   [0.33556773, 0.3464968, -1.20999654],
                   [1.13396357, 0.64719014, -0.37314183],
                   [-0.14864126, -0.74782087, 0.92789942],
                   [0.25446292, 0.18875155, 0.35677525],
                   [1.18808078, 0.9989521, -1.70936528],
                   [-0.42772192, -0.23482216, 2.22942188],
                   [0.5023115, -0.2546999, 0.59431561],
                   [1.03039212, -0.27777061, 0.43893643],
                   [-1.6481248, -0.11736926, 0.39427926],
                   [-0.8270073, -1.08703941, -0.46220551],
                   [-1.65290086, -0.85447434, -0.25093955],
                   [2.38457849, -0.51709509, -0.97800052],
                   [
                       0.70822521,
                       0.11395345,
                       1.4606325,
                   ], [-0.49915379, 2.60146319, 1.20100891],
                   [
                       -0.01957611,
                       -1.61507913,
                       -0.3507438,
                   ], [-0.04340775, -0.95576235, -0.88557194],
                   [-0.1068999, -1.47361438, -0.57488098],
                   [0.10196448, 1.2622373, -0.57288566],
                   [0.46155007, 0.86992573, -0.07612512],
                   [-0.06659418, -1.53956909, -2.77945064],
                   [-0.30081568, 0.14797997, 0.90844867],
                   [0.38111199, 1.29149786, 0.63063523],
                   [0.27202453, 0.04869613, -1.44668878],
                   [0.03618388, -0.62330206, -1.39043361],
                   [-0.5954522, 0.61790128, 1.67910304],
                   [0.10622445, 0.31818432, 0.72714358],
                   [-0.48496294, 0.85814888, -0.29055761],
                   [-0.85844605, 0.18657187, -0.07795668],
                   [
                       2.58353778,
                       -0.54173036,
                       0.4635027,
                   ], [-1.56162087, 0.12760808, 0.02244887],
                   [-0.65542649, 0.34366634, 0.19180049],
                   [-2.35675996, -1.09049215, 0.22829278],
                   [0.71868199, 0.072091, -0.36158273],
                   [1.55157057, 0.37661812, -0.25918432],
                   [
                       -1.39910186,
                       -0.24662851,
                       2.7263307,
                   ], [1.55454091, 0.60506067, -1.08736517],
                   [0.3786482, 0.07707048, -0.23131207]]])

    assert np.allclose(E_predict, E)
    assert np.allclose(F_predict, F, rtol=1e-04, atol=1e-02)
Example #18
0
def test_train_results_1h2o():
    """Checks the results of a training task."""
    global glob
    if 'glob' in globals():
        del glob
    
    dset_path = os.path.join(
        dset_dir, '1h2o/140h2o.sphere.gfn2.md.500k.prod1.3h2o.dset.1h2o-dset.npz'
    )
    dset = dataSet(dset_path)
    dset_dict = dset.asdict()

    train_dir_1h2o = os.path.join(train_dir, '1h2o/')
    train_idxs_path = os.path.join(train_dir_1h2o, 'train_idxs.npy')
    valid_idxs_path = os.path.join(train_dir_1h2o, 'valid_idxs.npy')
    train_idxs = np.load(train_idxs_path, allow_pickle=True)
    valid_idxs = np.load(valid_idxs_path, allow_pickle=True)

    n_train = 50
    n_valid = 100
    sigma = 42

    train = GDMLTrain()
    task = train.create_task(
        dset_dict,
        n_train,
        dset_dict,
        n_valid,
        sigma,
        lam=1e-15,
        use_sym=True,
        use_E=True,
        use_E_cstr=False,
        use_cprsn=False,
        solver='analytic',
        solver_tol=1e-4,
        interact_cut_off=None,
        idxs_train=train_idxs,
        idxs_valid=valid_idxs,
    )
    model = train.train(task)

    alphas_F = model['alphas_F']
    R_desc = model['R_desc']
    tril_perms_lin = model['tril_perms_lin']

    # Reference data
    alphas_F_ref = np.load(
        os.path.join(train_dir_1h2o, 'alphas_F.npy'),
        allow_pickle=True
    )
    R_desc_ref = np.load(
        os.path.join(train_dir_1h2o, 'R_desc.npy'),
        allow_pickle=True
    )
    tril_perms_lin_ref = np.load(
        os.path.join(train_dir_1h2o, 'tril_perms_lin.npy'),
        allow_pickle=True
    )

    del train

    # Coefficients will not be exactly the same.
    assert np.allclose(R_desc, R_desc_ref, rtol=1e-05, atol=1e-08)
    assert np.allclose(alphas_F, alphas_F_ref, rtol=1e2, atol=0)
    assert np.allclose(
        np.array(model['c']), np.array(331288.48632617114)
    )
    assert np.allclose(
        np.array(model['norm_y_train']), np.array(321987215081.7051),
        rtol=1e-3, atol=0
    )