Example #1
0
    def __init__(
            self,
            training_environment,
            evaluation_environment,
            policy,
            Qs,
            pool,
            static_fns,
            plotter=None,
            tf_summaries=False,

            lr=3e-4,
            reward_scale=1.0,
            target_entropy='auto',
            discount=0.99,
            tau=5e-3,
            target_update_interval=1,
            action_prior='uniform',
            reparameterize=False,
            store_extra_policy_info=False,

            deterministic=False,
            model_train_freq=250,
            model_train_slower=1,
            num_networks=7,
            num_elites=5,
            num_Q_elites=2, # The num of Q ensemble is set in command line
            model_retain_epochs=20,
            rollout_batch_size=100e3,
            real_ratio=0.1,
            critic_same_as_actor=True,
            rollout_schedule=[20,100,1,1],
            hidden_dim=200,
            max_model_t=None,
            dir_name=None,
            evaluate_explore_freq=0,
            num_Q_per_grp=2,
            num_Q_grp=1,
            cross_grp_diff_batch=False,

            model_load_dir=None,
            model_load_index=None,
            model_log_freq=0,
            **kwargs,
    ):
        """
        Args:
            env (`SoftlearningEnv`): Environment used for training.
            policy: A policy function approximator.
            initial_exploration_policy: ('Policy'): A policy that we use
                for initial exploration which is not trained by the algorithm.
            Qs: Q-function approximators. The min of these
                approximators will be used. Usage of at least two Q-functions
                improves performance by reducing overestimation bias.
            pool (`PoolBase`): Replay pool to add gathered samples to.
            plotter (`QFPolicyPlotter`): Plotter instance to be used for
                visualizing Q-function during training.
            lr (`float`): Learning rate used for the function approximators.
            discount (`float`): Discount factor for Q-function updates.
            tau (`float`): Soft value function target update weight.
            target_update_interval ('int'): Frequency at which target network
                updates occur in iterations.
            reparameterize ('bool'): If True, we use a gradient estimator for
                the policy derived using the reparameterization trick. We use
                a likelihood ratio based estimator otherwise.
            critic_same_as_actor ('bool'): If True, use the same sampling schema
                (model free or model based) as the actor in critic training. 
                Otherwise, use model free sampling to train critic.
        """

        super(MBPO, self).__init__(**kwargs)

        if training_environment.unwrapped.spec.id.find("Fetch") != -1:
            # Fetch env
            obs_dim = sum([i.shape[0] for i in training_environment.observation_space.spaces.values()]) 
            self.multigoal = 1
        else:
            obs_dim = np.prod(training_environment.observation_space.shape)
        # print("====", obs_dim, "========")

        act_dim = np.prod(training_environment.action_space.shape)

        # TODO: add variable scope to directly extract model parameters
        self._model_load_dir = model_load_dir
        print("============Model dir: ", self._model_load_dir)
        if model_load_index:
            latest_model_index = model_load_index
        else:
            latest_model_index = self._get_latest_index()
        self._model = construct_model(obs_dim=obs_dim, act_dim=act_dim, hidden_dim=hidden_dim, num_networks=num_networks, num_elites=num_elites,
                                      model_dir=self._model_load_dir, model_load_timestep=latest_model_index, load_model=True if model_load_dir else False)
        self._static_fns = static_fns
        self.fake_env = FakeEnv(self._model, self._static_fns)

        model_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self._model.name)
        all_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)

        self._rollout_schedule = rollout_schedule
        self._max_model_t = max_model_t

        # self._model_pool_size = model_pool_size
        # print('[ MBPO ] Model pool size: {:.2E}'.format(self._model_pool_size))
        # self._model_pool = SimpleReplayPool(pool._observation_space, pool._action_space, self._model_pool_size)

        self._model_retain_epochs = model_retain_epochs

        self._model_train_freq = model_train_freq
        self._rollout_batch_size = int(rollout_batch_size)
        self._deterministic = deterministic
        self._real_ratio = real_ratio

        self._log_dir = os.getcwd()
        self._writer = Writer(self._log_dir)

        self._training_environment = training_environment
        self._evaluation_environment = evaluation_environment
        self._policy = policy

        self._Qs = Qs
        self._Q_ensemble = len(Qs)
        self._Q_elites = num_Q_elites
        self._Q_targets = tuple(tf.keras.models.clone_model(Q) for Q in Qs)

        self._pool = pool
        self._plotter = plotter
        self._tf_summaries = tf_summaries

        self._policy_lr = lr
        self._Q_lr = lr

        self._reward_scale = reward_scale
        self._target_entropy = (
            -np.prod(self._training_environment.action_space.shape)
            if target_entropy == 'auto'
            else target_entropy)
        print('[ MBPO ] Target entropy: {}'.format(self._target_entropy))

        self._discount = discount
        self._tau = tau
        self._target_update_interval = target_update_interval
        self._action_prior = action_prior

        self._reparameterize = reparameterize
        self._store_extra_policy_info = store_extra_policy_info

        observation_shape = self._training_environment.active_observation_shape
        action_shape = self._training_environment.action_space.shape

        assert len(observation_shape) == 1, observation_shape
        self._observation_shape = observation_shape
        assert len(action_shape) == 1, action_shape
        self._action_shape = action_shape

        # self._critic_train_repeat = kwargs["critic_train_repeat"]
        # actor UTD should be n times larger or smaller than critic UTD
        assert self._actor_train_repeat % self._critic_train_repeat == 0 or \
               self._critic_train_repeat % self._actor_train_repeat == 0

        self._critic_train_freq = self._n_train_repeat // self._critic_train_repeat
        self._actor_train_freq = self._n_train_repeat // self._actor_train_repeat
        self._critic_same_as_actor = critic_same_as_actor
        self._model_train_slower = model_train_slower
        self._origin_model_train_epochs = 0

        self._dir_name = dir_name
        self._evaluate_explore_freq = evaluate_explore_freq

        # Inter-group Qs are trained with the same data; Cross-group Qs different.
        self._num_Q_per_grp = num_Q_per_grp
        self._num_Q_grp = num_Q_grp
        self._cross_grp_diff_batch = cross_grp_diff_batch

        self._model_log_freq = model_log_freq

        self._build()
Example #2
0
    def __init__(
            self,
            training_environment,
            evaluation_environment,
            policy,
            Qs,
            pool,
            static_fns,
            plotter=None,
            tf_summaries=False,

            lr=3e-4,
            reward_scale=1.0,
            target_entropy='auto',
            discount=0.99,
            tau=5e-3,
            target_update_interval=1,
            action_prior='uniform',
            reparameterize=False,
            store_extra_policy_info=False,

            deterministic=False,
            model_train_freq=250,
            num_networks=7,
            num_elites=5,
            model_retain_epochs=20,
            rollout_batch_size=100e3,
            real_ratio=0.1,
            rollout_schedule=[20,100,1,1],
            hidden_dim=200,
            max_model_t=None,
            **kwargs,
    ):
        """
        Args:
            env (`SoftlearningEnv`): Environment used for training.
            policy: A policy function approximator.
            initial_exploration_policy: ('Policy'): A policy that we use
                for initial exploration which is not trained by the algorithm.
            Qs: Q-function approximators. The min of these
                approximators will be used. Usage of at least two Q-functions
                improves performance by reducing overestimation bias.
            pool (`PoolBase`): Replay pool to add gathered samples to.
            plotter (`QFPolicyPlotter`): Plotter instance to be used for
                visualizing Q-function during training.
            lr (`float`): Learning rate used for the function approximators.
            discount (`float`): Discount factor for Q-function updates.
            tau (`float`): Soft value function target update weight.
            target_update_interval ('int'): Frequency at which target network
                updates occur in iterations.
            reparameterize ('bool'): If True, we use a gradient estimator for
                the policy derived using the reparameterization trick. We use
                a likelihood ratio based estimator otherwise.
        """

        super(MBPO, self).__init__(**kwargs)

        obs_dim = np.prod(training_environment.observation_space.shape)
        act_dim = np.prod(training_environment.action_space.shape)
        self._model = construct_model(obs_dim=obs_dim, act_dim=act_dim, hidden_dim=hidden_dim, num_networks=num_networks, num_elites=num_elites)
        self._static_fns = static_fns
        self.fake_env = FakeEnv(self._model, self._static_fns)

        self._rollout_schedule = rollout_schedule
        self._max_model_t = max_model_t

        # self._model_pool_size = model_pool_size
        # print('[ MBPO ] Model pool size: {:.2E}'.format(self._model_pool_size))
        # self._model_pool = SimpleReplayPool(pool._observation_space, pool._action_space, self._model_pool_size)

        self._model_retain_epochs = model_retain_epochs

        self._model_train_freq = model_train_freq
        self._rollout_batch_size = int(rollout_batch_size)
        self._deterministic = deterministic
        self._real_ratio = real_ratio

        self._log_dir = os.getcwd()
        self._writer = Writer(self._log_dir)

        self._training_environment = training_environment
        self._evaluation_environment = evaluation_environment
        self._policy = policy

        self._Qs = Qs
        self._Q_targets = tuple(tf.keras.models.clone_model(Q) for Q in Qs)

        self._pool = pool
        self._plotter = plotter
        self._tf_summaries = tf_summaries

        self._policy_lr = lr
        self._Q_lr = lr

        self._reward_scale = reward_scale
        self._target_entropy = (
            -np.prod(self._training_environment.action_space.shape)
            if target_entropy == 'auto'
            else target_entropy)
        print('[ MBPO ] Target entropy: {}'.format(self._target_entropy))

        self._discount = discount
        self._tau = tau
        self._target_update_interval = target_update_interval
        self._action_prior = action_prior

        self._reparameterize = reparameterize
        self._store_extra_policy_info = store_extra_policy_info

        observation_shape = self._training_environment.active_observation_shape
        action_shape = self._training_environment.action_space.shape

        assert len(observation_shape) == 1, observation_shape
        self._observation_shape = observation_shape
        assert len(action_shape) == 1, action_shape
        self._action_shape = action_shape

        self._build()
Example #3
0
File: mbpo.py Project: melfm/mbpo
    def __init__(
        self,
        training_environment,
        evaluation_environment,
        policy,
        Qs,
        pool,
        static_fns,
        plotter=None,
        tf_summaries=False,
        lr=3e-4,
        reward_scale=1.0,
        target_entropy='auto',
        discount=0.99,
        tau=5e-3,
        target_update_interval=1,
        action_prior='uniform',
        reparameterize=False,
        store_extra_policy_info=False,
        deterministic=False,
        model_train_freq=250,
        num_networks=7,
        num_elites=5,
        model_retain_epochs=20,
        rollout_batch_size=1e3,
        real_ratio=0.1,
        rollout_schedule=[20, 100, 1, 1],
        hidden_dim=200,
        max_model_t=None,
        shape_reward=False,
        max_action=1.0,
        **kwargs,
    ):
        """
        Args:
            env (`SoftlearningEnv`): Environment used for training.
            policy: A policy function approximator.
            initial_exploration_policy: ('Policy'): A policy that we use
                for initial exploration which is not trained by the algorithm.
            Qs: Q-function approximators. The min of these
                approximators will be used. Usage of at least two Q-functions
                improves performance by reducing overestimation bias.
            pool (`PoolBase`): Replay pool to add gathered samples to.
            plotter (`QFPolicyPlotter`): Plotter instance to be used for
                visualizing Q-function during training.
            lr (`float`): Learning rate used for the function approximators.
            discount (`float`): Discount factor for Q-function updates.
            tau (`float`): Soft value function target update weight.
            target_update_interval ('int'): Frequency at which target network
                updates occur in iterations.
            reparameterize ('bool'): If True, we use a gradient estimator for
                the policy derived using the reparameterization trick. We use
                a likelihood ratio based estimator otherwise.
        """
        super(MBPO, self).__init__(**kwargs)
        # for regular gym env
        #obs_dim = np.prod(training_environment.observation_space.shape)
        # for yuchen's modified env
        obs_dim = np.prod(
            training_environment.observation_space['observation'].shape)
        act_dim = np.prod(training_environment.action_space.shape)
        self.obs_dim_tup = training_environment.observation_space[
            'observation'].shape
        self.act_dim_tup = training_environment.action_space.shape
        self._model = construct_model(obs_dim=obs_dim,
                                      act_dim=act_dim,
                                      hidden_dim=hidden_dim,
                                      num_networks=num_networks,
                                      num_elites=num_elites)
        self._static_fns = static_fns
        self.fake_env = FakeEnv(self._model, self._static_fns)

        self._rollout_schedule = rollout_schedule
        self._max_model_t = max_model_t

        # self._model_pool_size = model_pool_size
        # print('[ MBPO ] Model pool size: {:.2E}'.format(self._model_pool_size))
        # self._model_pool = SimpleReplayPool(pool._observation_space, pool._action_space, self._model_pool_size)

        self._model_retain_epochs = model_retain_epochs

        self._model_train_freq = model_train_freq
        self._rollout_batch_size = int(rollout_batch_size)
        self._deterministic = deterministic
        self._real_ratio = real_ratio

        self._log_dir = os.getcwd()
        self._writer = Writer(self._log_dir)

        self._training_environment = training_environment
        self._evaluation_environment = evaluation_environment
        self._policy = policy

        self._Qs = Qs
        self._Q_targets = tuple(tf.keras.models.clone_model(Q) for Q in Qs)

        self._pool = pool
        # TODO: Fix hard-coded path
        # Only do this if we are shaping the reward
        print("Are we shaping the reward: {0}".format(
            shape_reward))  #TODO: remove this line once debugging is done
        if (shape_reward):
            demo_data = np.load("./mbpo/demonstration_data/demo_data_old.npz")
            # The demo data needs the next observations
            # TODO : Fix the skip last trajectory. The data should contain separate
            # observations and next_observations.
            samples = {
                'observations': demo_data["o"].reshape(-1, 6)[:-40],
                'actions': demo_data["u"].reshape(-1, 4),
                'next_observations': demo_data["o"].reshape(-1, 6)[:-40],
                'rewards': demo_data["r"].reshape(-1, 1),
                'terminals': demo_data["done"].reshape(-1, 1)
            }
            self._demo_pool = SimpleReplayPool(
                pool._observation_space['observation'], pool._action_space,
                pool._max_size)
            self._demo_pool.add_samples(samples)

        self._plotter = plotter
        self._tf_summaries = tf_summaries

        self._policy_lr = lr
        self._Q_lr = lr

        self._reward_scale = reward_scale
        self._target_entropy = (
            -np.prod(self._training_environment.action_space.shape)
            if target_entropy == 'auto' else target_entropy)
        print('[ MBPO ] Target entropy: {}'.format(self._target_entropy))

        self._discount = discount
        self._tau = tau
        self._target_update_interval = target_update_interval
        self._action_prior = action_prior

        self._reparameterize = reparameterize
        self._store_extra_policy_info = store_extra_policy_info

        observation_shape = self._training_environment.active_observation_shape
        action_shape = self._training_environment.action_space.shape

        assert len(observation_shape) == 1, observation_shape
        self._observation_shape = observation_shape
        assert len(action_shape) == 1, action_shape
        self._action_shape = action_shape

        self.shape_reward = shape_reward
        self.max_action = max_action

        self._build()