class hinged_beam_tests(unittest.TestCase): density = 5.0 length = 20.0 force = 34.2 # N/m hinge_torque = 0.0 free_beam = False def setUp(self): # FE model for beam x = linspace(0, self.length, 20) fe = BeamFE(x, density=self.density, EA=0, EIy=1, EIz=0) fe.set_boundary_conditions('C', 'F') self.beam = ModalElementFromFE('beam', fe, 0) # Set loading - in negative Z direction load = np.zeros((len(x), 3)) load[:, 2] = -self.force self.beam.loading = load # Hinge with axis along Y axis self.hinge = Hinge('hinge', [0, 1, 0]) self.hinge.internal_torque = self.hinge_torque # Build system self.system = System() self.system.add_leaf(self.hinge) self.hinge.add_leaf(self.beam) self.system.setup() if not self.free_beam: # Prescribe hinge to be fixed self.system.prescribe(self.hinge) # Initial calculations self.recalc() def recalc(self): self.system.update_kinematics() # Set up nodal values initially self.system.update_matrices() self.system.solve_accelerations() # Calculate accelerations of DOFs self.system.update_kinematics() # Update nodal values based on DOFs self.system.update_matrices() self.system.solve_reactions() # Solve reactions incl d'Alembert
def __init__(self, structure_config): s = structure_config #### Load details of flexible elements #### if "definition" in s["tower"]: if "mass" in s["tower"]: raise ValueError("Both tower definition and explicit mass!") self.tower_definition = Tower(s["tower"]["definition"]) assert np.all(self.tower_definition.stn_pos[:, :2] == 0) # vert. z_tower = self.tower_definition.stn_pos[:, 2] self.tower_modes = ModesFromScratch( z_tower - z_tower[0], self.tower_definition.density, 1, self.tower_definition.EIy, self.tower_definition.EIz, ) else: self.tower_definition = None self.tower_modes = None if "blade" in s: self.blade_modes = load_modes_from_Bladed(s["blade"]["definition"]) else: self.blade_modes = None #### Create the elements #### # Free joint represents the rigid-body motion of the platform free_joint = FreeJoint("base") # This is the rigid-body mass of the platform structure conn_platform = RigidConnection("conn-platform", offset=s["platform"]["CoM"]) platform = RigidBody("platform", mass=s["platform"]["mass"], inertia=np.diag(s["platform"]["inertia"])) free_joint.add_leaf(conn_platform) conn_platform.add_leaf(platform) # Make a rigid body to represent the added mass # (approximate to zero frequency) # XXX this is skipping the coupling matrix # A = whales_model.A(0) # added_mass = RigidBody('added-mass', mass=np.diag(A[:3, :3]), # inertia=A[3:, 3:]) # Flexible tower or equivalent rigid body if self.tower_modes: # move base of tower 10m up, and rotate so tower x-axis is vertical conn_tower = RigidConnection("conn-tower", offset=[0, 0, z_tower[0]], rotation=rotmat_y(-pi / 2)) tower = DistalModalElementFromScratch("tower", self.tower_modes, s["tower"]["number of normal modes"]) else: # move tower to COG conn_tower = RigidConnection("conn-tower", offset=s["tower"]["CoM"]) tower = RigidBody("tower", s["tower"]["mass"], np.diag(s["tower"]["inertia"])) free_joint.add_leaf(conn_tower) conn_tower.add_leaf(tower) # The nacelle -- rigid body # rotate back so nacelle inertia is aligned with global coordinates if self.tower_modes: nacoff = s["nacelle"]["offset from tower top"] conn_nacelle = RigidConnection( "conn-nacelle", offset=dot(rotmat_y(pi / 2), nacoff), rotation=rotmat_y(pi / 2) ) tower.add_leaf(conn_nacelle) else: conn_nacelle = RigidConnection("conn-nacelle", offset=np.array([0, 0, s["nacelle"]["height"]])) free_joint.add_leaf(conn_nacelle) nacelle = RigidBody( "nacelle", mass=s["nacelle"]["mass"], inertia=np.diag(s["nacelle"].get("inertia", np.zeros(3))) ) conn_nacelle.add_leaf(nacelle) # The rotor hub -- currently just connections (no mass) # rotate so rotor centre is aligned with global coordinates if self.tower_modes: rotoff = s["rotor"]["offset from tower top"] conn_rotor = RigidConnection("conn-rotor", offset=dot(rotmat_y(pi / 2), rotoff), rotation=rotmat_y(pi / 2)) tower.add_leaf(conn_rotor) else: conn_rotor = RigidConnection("conn-rotor", offset=np.array([0, 0, s["nacelle"]["height"]])) free_joint.add_leaf(conn_rotor) # The drive shaft rotation (rotation about x) shaft = Hinge("shaft", [1, 0, 0]) conn_rotor.add_leaf(shaft) # The blades if self.blade_modes: rtlen = s["rotor"]["root length"] Ryx = dot(rotmat_y(-pi / 2), rotmat_x(-pi / 2)) # align blade modes for i in range(3): R = rotmat_x(i * 2 * pi / 3) root = RigidConnection("root%d" % (i + 1), offset=dot(R, [0, 0, rtlen]), rotation=dot(R, Ryx)) blade = ModalElement("blade%d" % (i + 1), self.blade_modes) shaft.add_leaf(root) root.add_leaf(blade) else: rotor = RigidBody("rotor", s["rotor"]["mass"], np.diag(s["rotor"]["inertia"])) shaft.add_leaf(rotor) # Build system self.system = System(free_joint) # Constrain missing DOFs -- tower torsion & extension not complete if self.tower_modes: self.system.prescribe(tower, vel=0, part=[0, 3])
def __init__(self, structure_config): s = structure_config #### Load details of flexible elements #### if 'definition' in s['tower']: if 'mass' in s['tower']: raise ValueError("Both tower definition and explicit mass!") self.tower_definition = Tower(s['tower']['definition']) assert np.all(self.tower_definition.stn_pos[:, :2] == 0) # vert. z_tower = self.tower_definition.stn_pos[:, 2] self.tower_modes = ModesFromScratch( z_tower - z_tower[0], self.tower_definition.density, 1, self.tower_definition.EIy, self.tower_definition.EIz) else: self.tower_definition = None self.tower_modes = None if 'blade' in s: self.blade_modes = load_modes_from_Bladed(s['blade']['definition']) else: self.blade_modes = None #### Create the elements #### # Free joint represents the rigid-body motion of the platform free_joint = FreeJoint('base') # This is the rigid-body mass of the platform structure conn_platform = RigidConnection('conn-platform', offset=s['platform']['CoM']) platform = RigidBody('platform', mass=s['platform']['mass'], inertia=np.diag(s['platform']['inertia'])) free_joint.add_leaf(conn_platform) conn_platform.add_leaf(platform) # Make a rigid body to represent the added mass # (approximate to zero frequency) # XXX this is skipping the coupling matrix #A = whales_model.A(0) # added_mass = RigidBody('added-mass', mass=np.diag(A[:3, :3]), # inertia=A[3:, 3:]) # Flexible tower or equivalent rigid body if self.tower_modes: # move base of tower 10m up, and rotate so tower x-axis is vertical conn_tower = RigidConnection( 'conn-tower', offset=[0, 0, z_tower[0]], rotation=rotmat_y(-pi/2)) tower = DistalModalElementFromScratch( 'tower', self.tower_modes, s['tower']['number of normal modes']) else: # move tower to COG conn_tower = RigidConnection( 'conn-tower', offset=s['tower']['CoM']) tower = RigidBody('tower', s['tower']['mass'], np.diag(s['tower']['inertia'])) free_joint.add_leaf(conn_tower) conn_tower.add_leaf(tower) # The nacelle -- rigid body # rotate back so nacelle inertia is aligned with global coordinates if self.tower_modes: nacoff = s['nacelle']['offset from tower top'] conn_nacelle = RigidConnection('conn-nacelle', offset=dot(rotmat_y(pi/2), nacoff), rotation=rotmat_y(pi/2)) tower.add_leaf(conn_nacelle) else: conn_nacelle = RigidConnection( 'conn-nacelle', offset=np.array([0, 0, s['nacelle']['height']])) free_joint.add_leaf(conn_nacelle) nacelle = RigidBody( 'nacelle', mass=s['nacelle']['mass'], inertia=np.diag(s['nacelle'].get('inertia', np.zeros(3)))) conn_nacelle.add_leaf(nacelle) # The rotor hub -- currently just connections (no mass) # rotate so rotor centre is aligned with global coordinates if self.tower_modes: rotoff = s['rotor']['offset from tower top'] conn_rotor = RigidConnection('conn-rotor', offset=dot(rotmat_y(pi/2), rotoff), rotation=rotmat_y(pi/2)) tower.add_leaf(conn_rotor) else: conn_rotor = RigidConnection( 'conn-rotor', offset=np.array([0, 0, s['nacelle']['height']])) free_joint.add_leaf(conn_rotor) # The drive shaft rotation (rotation about x) shaft = Hinge('shaft', [1, 0, 0]) conn_rotor.add_leaf(shaft) # The blades if self.blade_modes: rtlen = s['rotor']['root length'] Ryx = dot(rotmat_y(-pi/2), rotmat_x(-pi/2)) # align blade modes for i in range(3): R = rotmat_x(i*2*pi/3) root = RigidConnection('root%d' % (i+1), offset=dot(R, [0, 0, rtlen]), rotation=dot(R, Ryx)) blade = ModalElement('blade%d' % (i+1), self.blade_modes) shaft.add_leaf(root) root.add_leaf(blade) else: rotor = RigidBody('rotor', s['rotor']['mass'], np.diag(s['rotor']['inertia'])) shaft.add_leaf(rotor) # Build system self.system = System(free_joint) # Constrain missing DOFs -- tower torsion & extension not complete if self.tower_modes: self.system.prescribe(tower, vel=0, part=[0, 3])