# # Define hydrometeors and sensors. # sensors = [getattr(mcrf.sensors, n) for n in args.sensors] # # Add a priori providers. # observation_error = mcrf.liras.ObservationError(sensors, forward_model_error=False, scene=scene) observation_error.noise_scaling["lcpr"] = 1 data_provider.add(ice.a_priori[0]) data_provider.add(ice.a_priori[1]) data_provider.add(snow.a_priori[0]) data_provider.add(snow.a_priori[1]) data_provider.add(rain.a_priori[0]) data_provider.add(rain.a_priori[1]) data_provider.add(cloud_water_a_priori) data_provider.add(h2o_a_priori) data_provider.add(observation_error) data_provider.add(observations) # # Run the retrieval. # retrieval = CloudRetrieval(hydrometeors, sensors, data_provider)
else: kwargs = {"ice_psd": ice.psd, "liquid_psd": rain.psd} data_provider = ModelDataProvider(99, scene=scene.upper(), **kwargs) # # Define hydrometeors and sensors. # sensors = [lcpr] # # Add a priori providers. # observation_errors = mcrf.liras.ObservationError(sensors) data_provider.add(ice.a_priori[0]) data_provider.add(ice.a_priori[1]) data_provider.add(snow.a_priori[0]) data_provider.add(snow.a_priori[1]) data_provider.add(rain.a_priori[0]) data_provider.add(rain.a_priori[1]) data_provider.add(observation_errors) data_provider.add(observations) # # Run the retrieval. # retrieval = CloudRetrieval(hydrometeors, sensors, data_provider) retrieval.setup()
snow_psd=snow.psd, liquid_psd=liquid.psd, scene=scene.upper()) # # Define hydrometeors and sensors. # hydrometeors = [ice, rain] sensors = [lcpr, mwi, ici] # # Add a priori providers. # data_provider.add(ice.a_priori[0]) data_provider.add(ice.a_priori[1]) data_provider.add(snow.a_priori[0]) data_provider.add(snow.a_priori[1]) data_provider.add(rain.a_priori[0]) data_provider.add(rain.a_priori[1]) data_provider.add(cloud_water_a_priori) data_provider.add(rh_a_priori) data_provider.add(mcrf.liras.ObservationError(sensors)) data_provider.add(observations) # # Define hydrometeors and sensors. # hydrometeors = [ice, rain]