Example #1
0
    def __data_generation(self, img_ids_temp):
        "Generates data containing batch_size samples"

        # Initialization
        X = np.empty((self.batch_size, *self.dim, self.n_channels))
        y = np.empty((self.batch_size), dtype=int)

        # Generate data
        for i, ID in enumerate(img_ids_temp):
            image = load_dicom_image(ID,
                                     to_RGB=self.to_RGB,
                                     rescale=self.rescale)
            try:
                image = Image.fromarray(image)
            except:
                print(
                    "Pil.Image can't read image. Possible 12 or 16 bit image. Try rescale=True to scale to 8 bit."
                )

            image = image.resize((self.dim[0], self.dim[1]))

            X[i, ] = image

            ann = self.imgs_anns_dict[ID][0]
            y[i] = self.dataset.classes_dict[ann["labelId"]]["class_id"]
        return X, to_categorical(y, num_classes=self.n_classes)
def test_visualize(p):
    labels_dict = {
        "L_egJRyg": 1,  # bounding box
        "L_MgevP2": 2,  # polygon
        "L_D21YL2": 3,  # freeform
        "L_lg7klg": 4,  # line
        "L_eg69RZ": 5,  # location
        "L_GQoaJg": 6,  # global_image
        "L_JQVWjZ": 7,  # global_series
        "L_3QEOpg": 8,  # global_exam
    }

    p.set_labels_dict(labels_dict)

    ct_dataset = p.get_dataset_by_id("D_qGQdpN")
    ct_dataset.prepare()

    # image with multiple annotations
    image_id = ct_dataset.get_image_ids()[7]

    grey_image = visualize.load_dicom_image(image_id)
    rgb_image = visualize.load_dicom_image(image_id, to_RGB=True)
    scaled_image_1 = visualize.load_dicom_image(image_id, rescale=True)

    assert np.amax(grey_image) == 701
    assert np.amax(scaled_image_1) == 255

    assert grey_image.shape == (256, 256)
    assert rgb_image.shape == (256, 256, 3)

    scaled_image_2, gt_class_id, gt_bbox, gt_mask = visualize.get_image_ground_truth(
        image_id, ct_dataset
    )

    assert len(gt_class_id) == len(gt_class_id)
    assert gt_mask.shape == (256, 256, 5)
Example #3
0
    def __data_generation(self, img_ids_temp):
        "Generates data containing batch_size samples"

        # Initialization
        X = np.empty((self.batch_size, *self.dim, self.n_channels))
        y = np.empty((self.batch_size), dtype=int)

        # Generate data
        for i, ID in enumerate(img_ids_temp):
            image = load_dicom_image(ID, to_RGB=True)
            image = Image.fromarray(image)
            image = image.resize((self.dim[0], self.dim[1]))
            # image = resize(image, (self.dim[0], self.dim[1]))

            X[i, ] = image

            ann = self.imgs_anns_dict[ID][0]
            y[i] = self.dataset.classes_dict[ann["labelId"]]["class_id"]
        return X, to_categorical(y, num_classes=self.n_classes)
Example #4
0
def create_tf_bbox_example(annotations, image_id, classes_dict):

    image = visualize.load_dicom_image(image_id)
    width = int(image.shape[1])
    height = int(image.shape[0])

    # TODO: I think object detection API decoder needs jpeg images...
    raw_img = visualize.load_dicom_image(image_id, to_RGB=True)
    img = Image.fromarray(raw_img)
    img_buffer = io.BytesIO()
    img.save(img_buffer, format="jpeg")
    encoded_jpg = Image.open(img_buffer)

    if encoded_jpg.format != "JPEG":
        raise ValueError("Image format not JPEG")

    key = hashlib.sha256(img_buffer.getvalue()).hexdigest()

    xmins = [
    ]  # List of normalized left x coordinates in bounding box (1 per box)
    xmaxs = [
    ]  # List of normalized right x coordinates in bounding box (1 per box)
    ymins = [
    ]  # List of normalized top y coordinates in bounding box (1 per box)
    ymaxs = [
    ]  # List of normalized bottom y coordinates in bounding box (1 per box)
    classes_text = []  # List of string class name of bounding box (1 per box)
    classes = []  # List of integer class id of bounding box (1 per box)

    # per annotation
    for a in annotations:
        w = int(a["data"]["width"])
        h = int(a["data"]["height"])

        x_min = int(a["data"]["x"])
        y_min = int(a["data"]["y"])
        x_max = x_min + w
        y_max = y_min + h

        # WARN: these are normalized
        xmins.append(float(x_min / width))
        xmaxs.append(float(x_max / width))
        ymins.append(float(y_min / height))
        ymaxs.append(float(y_max / height))

        classes_text.append(a["labelId"].encode("utf8"))
        classes.append(classes_dict[a["labelId"]]["class_id"])

    # print(classes)

    tf_example = tf.train.Example(features=tf.train.Features(
        feature={
            "image/height":
            dataset_util.int64_feature(height),
            "image/width":
            dataset_util.int64_feature(width),
            "image/filename":
            dataset_util.bytes_feature(image_id.encode("utf8")),
            "image/source_id":
            dataset_util.bytes_feature(image_id.encode("utf8")),
            "image/key/sha256":
            dataset_util.bytes_feature(key.encode("utf8")),
            "image/encoded":
            dataset_util.bytes_feature(img_buffer.getvalue()),
            "image/format":
            dataset_util.bytes_feature("jpg".encode("utf8")),
            "image/object/bbox/xmin":
            dataset_util.float_list_feature(xmins),
            "image/object/bbox/xmax":
            dataset_util.float_list_feature(xmaxs),
            "image/object/bbox/ymin":
            dataset_util.float_list_feature(ymins),
            "image/object/bbox/ymax":
            dataset_util.float_list_feature(ymaxs),
            "image/object/class/text":
            dataset_util.bytes_list_feature(classes_text),
            "image/object/class/label":
            dataset_util.int64_list_feature(classes),
        }))

    return tf_example