def test_sparse_input(): expected = [ [0, 0], [0, 0], [1, 0], [2, 0], ] dense_X = np.array([[0.1, 0.1], [0.2, 0.4], [0.3, 0.2], [0.4, 0.3]]) X = scipy.sparse.csr_matrix(dense_X) y = np.array([0, 0, 1, 2]) disc = MDLP(shuffle=False).fit_transform(X, y) assert_array_equal(expected, disc.toarray())
def test_drop_collapsed_features_sparse(): expected = [ [0, 0], [0, 0], [1, 1], [2, 2], ] dense_X = np.array([[0.1, 0.1, 0.1, 0.1, 0.1], [0.4, 0.2, 0.4, 0.2, 0.4], [0.2, 0.3, 0.2, 0.3, 0.2], [0.3, 0.4, 0.3, 0.4, 0.3]]) X = scipy.sparse.csr_matrix(dense_X) y = np.array([0, 0, 1, 2]) disc = MDLP(drop_collapsed_features=True, shuffle=False).fit_transform(X, y) assert_array_equal(expected, disc.toarray())