def voltageBiPhasicPulse(offset, ampBits_1, ampBits_2, samples_1=4, samples_2=4): c = mea1k.Config() c.add( mea1k.cmdDelaySamples(400) ) # waits 20ms c.add( mea1k.cmdStatusOut( 1 ) ) #..# # Turn on stimulation buffer c.add( mea1k.cmdDAC( 0, offset-ampBits_1, 512 ) )#pulse one towards up c.add( mea1k.cmdDelaySamples( samples_1 ) ) #=4 ~ 200us ?? doesn't add up c.add( mea1k.cmdDAC( 0, offset+ampBits_2, 512 ) )#pulse two towards down c.add( mea1k.cmdDelaySamples( samples_2 ) )#=4 ~ 200us ?? doesn't add up c.add( mea1k.cmdDAC( 0, offset, 512 ) )#pulse three towards ~0 return c
def sineVari(t_period, n_samples, amp=5, periods=1): lc.stopLoop() lc.clear() lc.reset() lc.setStart() #Start the period' for i in range(0,n_samples): v = int(-amp*math.sin( periods*2*math.pi /n_samples * i)) #Amplitude of the sin-wave in bits s = int(20e3 * t_period/n_samples) #Time between the samples in bits. 1 bit = 50us = sampling freq. #print i,v,s lc.toLoop( mea1k.cmdVRefVari( 2048+v ) ) #Program v around 2048 bits. DAC has 12 bits #(=max. 4098 bits) lc.toLoop( mea1k.cmdDelaySamples( s )) lc.setStop() lc.download() #Download the loop to the FPGA
def stimulation(self, circle_path, outputDir): #Paramters of Stimulation number_of_repetitions = 10 interTrainDelay = 20000 # 10000 = 0.5s bin_length = 500 #Number of datapoints to crop after stimulus amp1 = 10 amp2 = 10 phase1 = 4 phase2 = 4 #Set gain back to normal operation conditions mea1kusr.init.board() mea1kusr.init.chip() save = stst.save('localhost') save.mkDir(outputDir) save.reset() print 'make chip' chip = libarray.Chip() print 'done' #mea1k.go(mea1k.cmdVRefMosR(1100)) #gives stable traces but many out of bounds after stim # Turn on power for the stimulation buffers mea1k.go( mea1k.cmdCore( onChipBias=1, stimPowerDown=0, outputEn=1, spi=0, # 0 == DataxDO off tx=0, # 0 == DAC0 rstMode=0, # 0 == auto offsetCyc=7, resetCyc=7, wlCyc=7)) mea1k.go( mea1k.cmdReadout( s1Bypass=0, s1Gain=1, # 1 == x16 0 == x7 s1RstMode=0, # 0 == disconnect s2Bypass=0, s2Gain=5, # 5 == x16 s3Bypass=0, s3Gain=0)) # 0 ==x2 #Import the information about the stimulation electrodes el_list = h5py.File(circle_path + '/segmentation_logfile.h5', 'r') routed_el = [ values['stim_el/gotten_el'][:] for key, values in el_list.iteritems() ] rec_el = [ values['rec_el/gotten_el'][:] for key, values in el_list.iteritems() ] el_list.close() logfile = h5py.File(outputDir + '/stimlist_stim_config_.hdf5', 'w') lengths = [i.size for i in routed_el] #Start iterating over each electrode print '{0:02} iterations to be done.'.format(max(lengths)) for i in range(max(lengths)): configFile = circle_path + '/config_structure/circles.hex.nrk' chip.loadHEX(configFile) print 'configFile loaded...' print 'Offset MEA around 512 bits...' Api = mea1kusr.api.Api() Api.binary_offset(512) #Offset the electrodes around 512 bits. print 'Offset done' stimlist = [] for j in routed_el: if i < j.size: stimlist.append(j[i]) # Save the stimulation electrodes as attributes stim_group = logfile.create_group('stim_config_' + str(i) + '/stimlist') for k, p in enumerate(stimlist): stim_group.attrs.create('channel_' + str(k), p) rec_group = logfile.create_group('stim_config_' + str(i) + '/recording_electrodes') for k, p in enumerate(rec_el): rec_group.attrs.create('channel_' + str(k), p) stimChannels = [] for k in stimlist: chip.electrodeToStim(k) stimChannels.append(chip.queryStimAtElectrode(k)) chip.download() time.sleep(2) print 'El. \tbuffer' for p, k in enumerate(stimChannels): print stimlist[p], '\t', k while -1 in stimChannels: stimChannels.remove(-1) print 'Offset MEA around 512 bits...' Api = mea1kusr.api.Api() Api.binary_offset(512) #Offset the electrodes around 512 bits. print 'Offset done' save.openDir(outputDir) save.mapping(chip.get_mapping()) c = mea1k.Config() c.add(self.switchOffAllChannels()) c.add(self.switchOnChannels(stimChannels, 1)) c.add(mea1k.cmdDelaySamples(100)) for l in range(number_of_repetitions): c.add( mea1k.cmdDelaySamples(interTrainDelay - (phase1 + phase2)) ) #-8 to account for the stimulus length c.add( self.voltageBiPhasicPulse(512, amp1, amp2, phase1, phase2)) train_time = (number_of_repetitions * interTrainDelay) / 20000. save.start('raw_stim_config_' + str(i)) c.send() time.sleep(train_time + 2) save.stop() time.sleep(3) raw_file = h5py.File( outputDir + '/raw_stim_config_' + str(i) + '.raw.h5', 'r') DAC = raw_file['sig'][1024, :] over_threshold_islets = np.where(DAC > 512 + (amp1 / 2))[ 0] #Sometimes the stimulation buffer doesn't send a DAC value stim_edges = over_threshold_islets[np.hstack( (0, np.asarray([ 1 + el for el in np.where(np.diff(over_threshold_islets) != 1)[0] ])))] #Extract the timing of the stimuli index = np.asarray( [np.arange(0, bin_length) + c for c in stim_edges]) seconds = index / 20000. el_indices = [] missing = {} for keys, values in logfile[ 'stim_config_' + str(i) + '/recording_electrodes'].attrs.iteritems(): missing[keys] = [] for it in values[:]: try: el_indices.append( np.where( raw_file['mapping']['electrode'] == it)[0][0]) except: missing[keys].append(it) print 'miss.el. keys \t values' for keys, values in missing.iteritems(): if values: print '\t', keys, values true_rec_el = list( logfile['stim_config_' + str(i) + '/recording_electrodes'].attrs[keys]) del logfile['stim_config_' + str(i) + '/recording_electrodes'].attrs[keys] for val in values: true_rec_el.remove(val) logfile['stim_config_' + str(i) + '/recording_electrodes'].attrs.modify( keys, true_rec_el) trace = np.empty( (1028, bin_length * stim_edges.size) ) #number_of_repetitions instead of stim_edges.size doesn't always work because sometimes the buffer missses some commands raw_file['sig'].read_direct(trace, source_sel=np.s_[:, index.flatten()]) f = h5py.File(outputDir + '/stim_config_' + str(i) + '.h5', 'w') cropped_trace = trace[sorted(el_indices)] if not stim_edges.size == number_of_repetitions: print 'DAC channel transmitted {0:03} out of {1:01} stimuli.'.format( stim_edges.size, number_of_repetitions) print 'Raw_trace is padded with zeros to get desired size.' corrected_traces = 512 * np.ones( (len(el_indices), bin_length * number_of_repetitions)) corrected_traces[:, bin_length * stim_edges.size] = cropped_trace f.create_dataset('sig', data=corrected_traces) else: f.create_dataset('sig', data=cropped_trace) f['mapping'] = raw_file['mapping'][sorted(el_indices)] f['proc0/spikeTimes'] = raw_file['proc0/spikeTimes'][:] f['time'] = seconds f['settings'] = raw_file['settings/gain'][:] f['version'] = raw_file['version'][:] raw_file.close() os.remove(outputDir + '/raw_stim_config_' + str(i) + '.raw.h5') f.close() print 'Iteration and postprocessing no. {0:03}/{1:01} done.'.format( i, max(lengths)) logfile.close()
chip.download() time.sleep(2) print stimChannels print 'Offset MEA around 512 bits...' import mea1kusr.api Api = mea1kusr.api.Api() Api.binary_offset(512) #Offset the electrodes around 512 bits. print 'Offset done' save.openDir(outputDir) save.mapping(chip.get_mapping()) c = mea1k.Config() c.add(switchOffAllChannels()) c.add(switchOnChannels(stimChannels, 1)) c.add(mea1k.cmdDelaySamples(100)) for u in range(number_of_repetitions): c.add(voltageBiPhasicPulse(512, amp1, amp2, phase1, phase2)) c.add(mea1k.cmdDelaySamples(interTrainDelay)) train_time = (number_of_repetitions * interTrainDelay) / 10000. + 1 save.start('configstructure_{0:03}'.format(t + 1)) c.send() time.sleep(train_time) save.stop() print t time.sleep(2)