V_ew_274k = Uaw_274k / U1w V_ew_274k_dsys = 1/U1w * sqrt(Uaw_274k_dsys**2 + (Uaw_274k * U1w_dsys / U1w)**2) V_ew_274k_mv = mv(V_ew_274k) V_ew_274k_mv_dtot = dtot_mv(V_ew_274k,V_ew_274k_dsys) V_ew_680k = Uaw_680k / U1w V_ew_680k_dsys = 1/U1w * sqrt(Uaw_680k_dsys**2 + (Uaw_680k * U1w_dsys / U1w)**2) V_ew_680k_mv = mv(V_ew_680k) V_ew_680k_mv_dtot = dtot_mv(V_ew_680k,V_ew_680k_dsys) R_E = 3e3 R_G = npfarray([48.7e3,274e3,680e3]) V_t = R_G / R_E print('\nAufgabe 1:\n') print(tbl([['Widerstand','48k7 (g)','274k (g)','274k (w)','680k (w)'],lst([V_t[0],V_t[1],V_t[1],V_t[2]],name='V_t'),lst([V_eg_48k7_mv,V_eg_274k_mv,V_ew_274k_mv,V_ew_680k_mv],[V_eg_48k7_mv_dtot,V_eg_274k_mv_dtot,V_ew_274k_mv_dtot,V_ew_680k_mv_dtot],'V_e'),['Abw',sig('',V_eg_48k7_mv,V_eg_48k7_mv_dtot,V_t[0],perc=True),sig('',V_eg_274k_mv,V_eg_274k_mv_dtot,V_t[1],perc=True),sig('',V_ew_274k_mv,V_ew_274k_mv_dtot,V_t[1],perc=True),sig('',V_ew_680k_mv,V_ew_680k_mv_dtot,V_t[2],perc=True)]])) print('\nEinzelwerte für 48k7 (g):\n') print(tbl([lst(V_eg_48k7,V_eg_48k7_dsys,'Verstärkung'),dev(V_eg_48k7,V_eg_48k7_dsys,V_t[0],name='Abw',perc=True)])) print('\nEinzelwerte für 274k (g):\n') print(tbl([lst(V_eg_274k,V_eg_274k_dsys,'Verstärkung'),dev(V_eg_274k,V_eg_274k_dsys,V_t[1],name='Abw',perc=True)])) print('\nEinzelwerte für 274k (w):\n') print(tbl([lst(V_ew_274k,V_ew_274k_dsys,'Verstärkung'),dev(V_ew_274k,V_ew_274k_dsys,V_t[1],name='Abw',perc=True)])) print('\nEinzelwerte für 680k (w):\n') print(tbl([lst(V_ew_680k,V_ew_680k_dsys,'Verstärkung'),dev(V_ew_680k,V_ew_680k_dsys,V_t[2],name='Abw',perc=True)])) # Plots f_uncert = 50e-6 f_1 = npfarray([0.3,0.6,0.9,3,6,9,30,60,90,150,200,300])*1e3 f_1_dsys = f_1 * f_uncert U_A1 = npfarray([6.76,6.70,6.68,5.46,3.82,2.78,0.900,0.456,0.306,0.187,0.140,0.095])
A1 = k1 * A A1_err = sqrt((k1_err * A)**2 + (k1 * A_err)**2) d = 1.4e-3 dichte = 7.9e3 k2 = exp(-msk * dichte * d) k2_err = dichte * d * msk_err * exp(-msk * dichte * d) A2 = k2 * A1 A2_err = sqrt((k2_err * A1)**2 + (k2 * A1_err)**2) print('\nAufgabe 5:\n') print( tbl([ lst(s, s_err, name='s / m'), lst(A, A_err, name='A / Bq'), lst(A1, A1_err, name='A1 / Bq'), lst(A2, A2_err, name='A2 / Bq') ])) # Aufgabe 6 p = npfarray([ 20, 57, 99, 126, 162, 222, 321, 353, 369, 391, 434, 470, 495, 521, 549, 602 ]) p_err = npfarray([2 for x in range(len(p))]) N = npfarray([ 4868, 4803, 4915, 4835, 4710, 4689, 3971, 2561, 1489, 609, 84, 67, 73, 93, 68, 83 ])
# Wellenlänge Laser ds = wl_se - wl_sa ds_dsys = sqrt(wl_se_dsys**2 + wl_sa_dsys**2) wl = 2. * ds / wl_m wl_dsys = 2. / wl_m * sqrt(ds_dsys**2 + (wl_m_dsys / wl_m)**2) wl_mv = mv(wl) wl_mv_dsto = dsto_mv(wl) wl_mv_dsys = dsys_mv(wl_dsys) wl_mv_dtot = dtot(wl_mv_dsys, wl_mv_dsto) print() print('Wellenlänge Laser:') print( tbl([ lst(ds, ds_dsys, 'ds'), lst(wl_m, wl_m_dsys, 'm'), lst(wl, wl_dsys, 'wl') ], )) print(val('Mitellwert', wl_mv, wl_mv_dtot)) print(sig('Abweichung', wl_mv, wl_mv_dtot, wl_lit, wl_lit_dsys)) # Brechungsindex Luft pltext.initplot(num=1, title='Brechungsindex Luft', xlabel='Intensitätsringe', ylabel='Druck in Pa') [sl1, dsl1, tmp, tmp] = linreg(bi_m1, bi_p1, bi_p1_dsys, plot=True,
V2 = -s2 d_V2 = d_s2 V3 = s3 d_V3 = d_s3 V4 = s4 d_V4 = d_s4 V1_T = R1_G / R1_E V2_T = R2_G / R2_E V3_T = R3_G / R3_E V4_T = R4_G / R4_E print() print( ms.tbl([ ms.lst(npfarray([R1_E, R2_E]), name='R_E', unit='Ω'), ms.lst(npfarray([R1_G, R2_G]), name='R_G', unit='Ω'), ms.lst(npfarray([V1, V2]), npfarray([d_V1, d_V2]), name='V'), ms.lst(npfarray([V1_T, V2_T]), name='V'), ms.dev(npfarray([V1, V2]), npfarray([d_V1, d_V2]), npfarray([V1_T, V2_T]), name='V', perc=True) ])) print() print( ms.tbl([ ms.lst(npfarray([R3_E, R4_E]), name='R_E', unit='Ω'), ms.lst(npfarray([R3_G, R4_G]), name='R_G', unit='Ω'), ms.lst(npfarray([V3, V4]), npfarray([d_V3, d_V4]), name='V'),
R_A1_dsys = 0.05 * R_A1 C_A1 = npfarray([470, 4.7, 47]) * 1e-9 C_A1_dsys = 0.10 * C_A1 g_thalb = npfarray([312, 32.6, 32.6]) * 1e-6 g_thalb_dsys = npfarray([4, 0.6, 0.6]) * 1e-6 tau = R_A1 * C_A1 tau_dsys = sqrt((R_A1 * C_A1_dsys)**2 + (R_A1_dsys * C_A1)**2) b_thalb = ln(2) * tau b_thalb_dsys = ln(2) * tau_dsys print() print('Aufgabe 1:\n') print( tbl([ lst(R_A1, R_A1_dsys, 'R'), lst(C_A1, C_A1_dsys, 'C'), lst(tau, tau_dsys, 'Tau') ])) print( tbl([ lst(b_thalb, b_thalb_dsys, 'T_1/2 (b)'), lst(g_thalb, g_thalb_dsys, 'T_1/2 (g)'), ['Abw'] + [ sig('', b_thalb[i], b_thalb_dsys[i], g_thalb[i], g_thalb_dsys[i]) for i in range(len(b_thalb)) ] ])) # Aufgabe 3 R_A3 = 1e3 R_A3_dsys = 0.05 * R_A3
T_CoA = (dt.datetime(2019, 2, 21) - dt.datetime(2012, 2, 2)).total_seconds() T_H_CoA = 5.27 * cs.year eps_CoA = 0.04 rho_abs_CoA = 7.9 * cs.gram / cs.centi**3 d_abs_CoA = 1.4 * cs.milli t_CoA = cs.minute a_CoA = npf([50, 105, 190]) * cs.milli d_a_CoA = npf([2, 2, 2]) * cs.milli n_CoA = npf([33865, 8266, 2171]) d_n_CoA = sqrt(n_CoA) n_CoA = (n_CoA / t_CoA - n0) / eps_CoA d_n_CoA = sqrt((d_n_CoA / t_CoA)**2 + d_n0**2) / eps_CoA print("Activity of γ-Radiation:") print(ms.tbl([ms.lst(n_CoA, d_n_CoA, name='n', unit='1/s', prefix=False)])) mu_abs_CoA = mu_rho_Co * rho_abs_CoA d_mu_abs_CoA = d_mu_rho_Co * rho_abs_CoA A_CoA = 4 * n_CoA * a_CoA**2 / r_c**2 d_A_CoA = A_CoA * sqrt((d_n_CoA / n_CoA)**2 + (2 * d_a_CoA / a_CoA)**2) A1_CoA = 4 * n_CoA * (a_CoA + l_c / 2)**2 / r_c**2 d_A1_CoA = A1_CoA * sqrt((d_n_CoA / n_CoA)**2 + (2 * d_a_CoA / (a_CoA + l_c / 2))**2) A2_CoA = A1_CoA * exp(-mu_abs_CoA * d_abs_CoA) d_A2_CoA = A2_CoA * sqrt((d_A1_CoA / A1_CoA)**2 + (d_abs_CoA * d_mu_abs_CoA)**2) A_l_CoA = A_N_CoA * exp(-ln(2) * T_CoA / T_H_CoA) k1_CoA = A1_CoA / A_CoA k2_CoA = A2_CoA / A1_CoA
title='Abbildung : Extrema zweiter Ordnung (LiF)', xlabel='Winkel in deg', ylabel='Zählrate in 1/s') pltext.plotdata(alpha_2o, rate_2o, rate_2o_err, label='Messwerte') plt.plot(x_kb2o_array, gauss(x_kb2o_array, *p_opt_kb2o), label=r'$K_\beta$ Fit') plt.plot(x_ka2o_array, gauss(x_ka2o_array, *p_opt_ka2o), label=r'$K_\alpha$ Fit') pltext.set_layout(xlim=(17.4, 21.6)) print('\nAufgabe 1b\n') print( tbl([['Peak:', ' A', ' mu', ' sig', ' Ug', ' FWHM', ' l', ' Abw'], lst([*p_opt_kb1o, fwhm_kb1o, l_kb1o], [*p_err_kb1o, fwhm_kb1o_err, l_kb1o_err], 'kb1o') + [dev(l_kb1o, l_kb1o_err, l_kb_lit, perc=True)], lst([*p_opt_ka1o, fwhm_ka1o, l_ka1o], [*p_err_ka1o, fwhm_ka1o_err, l_ka1o_err], 'ka1o') + [dev(l_ka1o, l_ka1o_err, l_ka_lit, perc=True)], lst([*p_opt_kb2o, fwhm_kb2o, l_kb2o], [*p_err_kb2o, fwhm_kb2o_err, l_kb2o_err], 'kb2o') + [dev(l_kb2o, l_kb2o_err, l_kb_lit, perc=True)], lst([*p_opt_ka2o, fwhm_ka2o, l_ka2o], [*p_err_ka2o, fwhm_ka2o_err, l_ka2o_err], 'ka2o') + [dev(l_ka2o, l_ka2o_err, l_ka_lit, perc=True)]])) # Aufgabe 1c U = npfarray([20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]) rate = npfarray([ 1.00, 1.90, 2.25, 8.00, 37.55, 72.20, 104.0, 134.4, 160.2, 180.5, 212.5,
R1 = npfarray([1, 10, 1]) * cs.kilo d_R1 = 0.05 * R1 T1_12 = npfarray([0.32, 0.04, 0.04]) * cs.milli d_T1_12 = npfarray([0.03, 0.01, 0.01]) * cs.milli f1 = npfarray([110, 600, 600]) U1_pp = npfarray([0.95, 0.95, 0.95]) d_U1_pp = npfarray([0.02, 0.02, 0.02]) tau1_O = T1_12 / ln(2) d_tau1_O = d_T1_12 / ln(2) tau1_T = R1 * C1 d_tau1_T = tau1_T * sqrt((d_R1 / R1)**2 + (d_C1 / C1)**2) print() print('1. Determination of the response time of a RC-element:') print(ms.tbl([ms.lst(C1, d_C1, name='C', unit='F'), ms.lst(R1, d_R1, name='R', unit='Ω'), ms.lst(tau1_O, d_tau1_O, name='τ', unit='s'), ms.lst(tau1_T, d_tau1_T, name='τ', unit='s'), ms.dev(tau1_O, d_tau1_O, tau1_T, d_tau1_T, name='τ')])) # (3) Frequency and phase of a RC-element R3 = cs.kilo d_R3 = 0.05 * R3 C3 = 47 * cs.nano d_C3 = 0.10 * C3 f3_G_low = 3.0 * cs.kilo d_f3_G_low = 0.3 * cs.kilo f3_G_high = 3.1 * cs.kilo d_f3_G_high = 0.3 * cs.kilo f3 = np.arange(1, 11, 1) * cs.kilo
Q_V_pv = Qel - Qab - wk_Wpv_mv Q_V_pv_dtot = sqrt(Qel_dtot**2 + Qab_dtot**2 + wk_Wpv_dsto**2) Q_V_D = Qel - Qab - W_D Q_V_D_dtot = sqrt(Qel_dtot**2 + Qab_dtot**2 + W_D_dsys**2) P_V_pv = Q_V_pv * wk_f_mv P_V_pv_dtot = sqrt((Q_V_pv_dtot * wk_f_mv)**2 + (Q_V_pv * wk_f_dsto)**2) P_V_D = Q_V_D * wk_f_mv P_V_D_dtot = sqrt((Q_V_D_dtot * wk_f_mv)**2 + (Q_V_D * wk_f_dsto)**2) wk_n_th = wk_Wpv_mv / Qel wk_n_th_dtot = 1 / Qel * sqrt(wk_Wpv_dsto**2 + (wk_Wpv_mv * Qel_dtot / Qel)**2) wk_n_eff = W_D / Qel wk_n_eff_dsys = 1 / Qel * sqrt(W_D_dsys**2 + (W_D * Qel_dtot / Qel)**2) print() print(tbl([['Qel']+lst(Qel,Qel_dtot),['Qab']+lst(Qab,Qab_dtot),['Wpv']+lst(wk_Wpv_mv,wk_Wpv_dsto),['W_D']+lst(W_D,W_D_dsys)])) print(tbl([['Pel']+lst(Pel,Pel_dtot),['Pab']+lst(Pab,Pab_dtot),['Ppv']+lst(Ppv,Ppv_dsto),['P_D']+lst(P_D,P_D_dtot)])) print(tbl([['Q_V (Wpv)']+lst(Q_V_pv,Q_V_pv_dtot),['Q_V (W_D)']+lst(Q_V_D,Q_V_D_dtot),['P_V (Wpv)']+lst(P_V_pv,P_V_pv_dtot),['P_V (W_D)']+lst(P_V_D,P_V_D_dtot)])) print(tbl([['f']+lst(wk_f_mv,wk_f_dsto),['F']+lst(wk_F,wk_F_dsys),['n_th']+lst(wk_n_th,wk_n_th_dtot),['n_eff']+lst(wk_n_eff,wk_n_eff_dsys)])) pltext.initplot(title='Wirkungsgrade in Abhängigkeit von der Frequenz', xlabel='Frequenz f / Hz', ylabel='Wirkungsgrad') pltext.plotdata(wk_f_mv, wk_n_th, wk_n_th_dtot, wk_f_dsto, label=r'$n_{th}$', connect=True) pltext.plotdata(wk_f_mv, wk_n_eff, wk_n_eff_dsys, wk_f_dsto, label=r'$n_{eff}$', connect=True) plt.xlim(3.75,5.875) plt.ylim(0.0,0.1) plt.legend(loc='upper left') plt.savefig('fig0.pdf', format='pdf') plt.show()
# Natrium # Measured Values wl = [331e-9, 395e-9, 404e-9, 416e-9, 420e-9, 427e-9, 430e-9, 434e-9, 439e-9, 442e-9, 449e-9, 454e-9, 467e-9, 475e-9, 498e-9, 515e-9, 525e-9, 568e-9, 589e-9, 668e-9, 675e-9, 687e-9, 696e-9, 703e-9, 707e-9, 715e-9, 720e-9, 727e-9, 738e-9, 751e-9, 763e-9, 770e-9, 773e-9, 795e-9, 801e-9, 811e-9, 819e-9] dwl = [1.5e-9 for i in wl] # Wellenlängen 1. Nebenserie ns1 = [819e-9] m = 3 Eryd = -13.605 E3p = Eryd / m**2 - h / e * c / ns1[0] for m in range(4,13): ns1.append(h / e * c / (Eryd * m**-2 - E3p)) print() print(lst("Wellenlängen 1. Nebenserie", ns1, [0.3e-9 for i in range(len(ns1))])) # Wellenlängen 2. Nebenserie ns2 = 589e-9 E3s = E3p - h / e * c / ns2 sCorr = 3 - sqrt(Eryd / E3s) ns2 = [] for m in range(5,10): ns2.append(h / e * c / (Eryd * (m - sCorr)**-2 - E3p)) print() print(lst("Wellenlängen 2. Nebenserie", ns2, [0.3e-9 for i in range(len(ns2))])) # Hauptserie pCorr = 3 - sqrt(Eryd / E3p)
tbl(tblstr, [f_m1x15, f_m1x20, f_m2x15, f_m2x20], [df_m1x15, df_m1x20, df_m2x15, df_m2x20])) print() print('Linreg results (slope / yitc):') print( tbl(tblstr, [[slope_1x15, yitc_1x15], [slope_1x20, yitc_1x20], [slope_2x15, yitc_2x15], [slope_2x20, yitc_2x20]], [[dslope_1x15, dyitc_1x15], [dslope_1x20, dyitc_1x20], [dslope_2x15, dyitc_2x15], [dslope_2x20, dyitc_2x20]])) print() print(sig('0-yitc 1@15', yitc_1x15, dyitc_1x15, 0.0)) print(sig('0-yitc 1@20', yitc_1x20, dyitc_1x20, 0.0)) print(sig('0-yitc 2@15', yitc_2x15, dyitc_2x15, 0.0)) print(sig('0-yitc 2@20', yitc_2x20, dyitc_2x20, 0.0)) print() print(lst('Moment of anertia Iz', Iz_list, dIz_list)) print() print(val('Iz (mean value)', Iz, Iz_dtot)) # color frequency Omega = 2. * pi * 10. / cf_10u dOmega = 2. * pi * 10. * cf_d10u / cf_10u**2 wf = 2. * pi * cf_f dwf = 2. * pi * cf_df cfplot = plot( title= r'angular color speed Ω as function of the angular rotation speed $ω_f$', xlabel=r'$ω_f$ / rad/s', ylabel='Ω / rad/s', fig=3)