Example #1
0
def test_get_fitdata():

    data_path = pkg_resources.resource_filename("measure_extinction", "data/")

    # read in the observed data of the stars
    redstar = StarData("hd229238.dat", path=data_path)
    compstar = StarData("hd204172.dat", path=data_path)

    # calculate the extinction curve
    ext = ExtData()
    ext.calc_elx(redstar, compstar)

    # once wavelenth units saved, update FITS file and use this line instead
    # of the 4 lines above

    # ext = ExtData(filename=data_path + "hd283809_hd064802_ext.fits")

    wave, y, unc = ext.get_fitdata(
        ["BAND", "IUE"], remove_uvwind_region=True, remove_lya_region=True
    )

    # fitting routines often cannot handle units, make sure none are present
    for cursrc in ext.waves.keys():
        assert isinstance(wave, u.Quantity)
        assert not isinstance(y, u.Quantity)
        assert not isinstance(unc, u.Quantity)
def SNR_ext(data_path, plot_path, starpair_list, plot=False):
    """
    - Calculate the median SNR of the extinction curves in certain wavelength regions
    - Plot the SNR of the extinction curves if requested

    Parameters
    ----------
    data_path : string
        Path to the data files

    plot_path : string
        Path to save the plots

    starpair_list : list of strings
        List of star pairs for which to calculate (and plot) the SNR, in the format "reddenedstarname_comparisonstarname" (no spaces)

    plot : boolean [default=False]
        Whether or not to plot the SNR vs. wavelength for every curve

    Returns
    -------
    - Median SNRs in certain wavelength regions
    - Plots of the SNR vs. wavelength (if requested)
    """
    meds = np.zeros((3, len(starpair_list)))
    for j, starpair in enumerate(starpair_list):
        # obtain the extinction curve data
        extdata = ExtData("%s%s_ext.fits" % (data_path, starpair.lower()))

        # transform the curve from E(lambda-V) to A(lambda)/A(V)
        extdata.trans_elv_alav()

        # obtain flat arrays
        waves, exts, uncs = extdata.get_fitdata(["SpeX_SXD", "SpeX_LXD"])

        # calculate the median SNR in certain wavelength regions
        ranges = [
            (0.79, 2.54),
            (2.85, 4.05),
            (4.55, 5.5),
        ]
        SNR = exts / uncs
        for i, range in enumerate(ranges):
            mask = (waves.value > range[0]) & (waves.value < range[1])
            meds[i][j] = np.median(np.abs(SNR[mask]))

        # plot SNR vs. wavelength if requested
        if plot:
            fig, ax = plt.subplots()
            ax.scatter(waves, SNR, s=1)
            plt.savefig(plot_path + starpair + "_SNR.pdf")

    print(ranges[0], np.nanmin(meds[0]), np.nanmax(meds[0]))
    print(ranges[1], np.nanmin(meds[1]), np.nanmax(meds[1]))
    print(ranges[2], np.nanmin(meds[2]), np.nanmax(meds[2]))
def fit_spex_ext(
    starpair,
    path,
    functype="pow",
    dense=False,
    profile="drude_asym",
    exclude=None,
    bootstrap=False,
    fixed=False,
):
    """
    Fit the observed SpeX NIR extinction curve

    Parameters
    ----------
    starpair : string
        Name of the star pair for which to fit the extinction curve, in the format "reddenedstarname_comparisonstarname" (no spaces), or "average" to fit the average extinction curve

    path : string
        Path to the data files

    functype : string [default="pow"]
        Fitting function type ("pow" for powerlaw or "pol" for polynomial)

    dense : boolean [default=False]
        Whether or not to fit the features around 3 and 3.4 micron

    profile : string [default="drude_asym"]
        Profile to use for the features if dense = True (options are "gauss", "drude", "lorentz", "gauss_asym", "drude_asym", "lorentz_asym")

    exclude : list of tuples [default=None]
        list of tuples (min,max) with wavelength regions (in micron) that need to be excluded from the fitting, e.g. [(0.8,1.2),(2.2,5)]

    bootstrap : boolean [default=False]
        Whether or not to do a quick bootstrap fitting to get more realistic uncertainties on the fitting results

    fixed : boolean [default=False]
        Whether or not to add a fixed feature around 3 micron (for diffuse sightlines)

    Returns
    -------
    Updates extdata.model["type", "waves", "exts", "residuals", "chi2", "params"] and extdata.columns["AV"] with the fitting results:
        - type: string with the type of model (e.g. "pow_elx_Drude")
        - waves: np.ndarray with the SpeX wavelengths
        - exts: np.ndarray with the fitted model to the extinction curve at "waves" wavelengths
        - residuals: np.ndarray with the residuals, i.e. data-fit, at "waves" wavelengths
        - chi2 : float with the chi square of the fitting
        - params: list with output Parameter objects
    """
    # retrieve the SpeX data to be fitted, and sort the curve from short to long wavelengths
    filename = "%s%s_ext.fits" % (path, starpair.lower())
    if fixed:
        filename = filename.replace(".", "_ice.")
    extdata = ExtData(filename)
    (waves, exts, exts_unc) = extdata.get_fitdata(["SpeX_SXD", "SpeX_LXD"])
    indx = np.argsort(waves)
    waves = waves[indx].value
    exts = exts[indx]
    exts_unc = exts_unc[indx]

    # exclude wavelength regions if requested
    if exclude:
        mask = np.full_like(waves, False, dtype=bool)
        for region in exclude:
            mask += (waves > region[0]) & (waves < region[1])
        waves = waves[~mask]
        exts = exts[~mask]
        exts_unc = exts_unc[~mask]

    # get a quick estimate of A(V)
    if extdata.type == "elx":
        extdata.calc_AV()
        AV_guess = extdata.columns["AV"]
    else:
        AV_guess = None

    # convert to A(lambda)/A(1 micron)
    # ind1 = np.abs(waves - 1).argmin()
    # exts = exts / exts[ind1]
    # exts_unc = exts_unc / exts[ind1]

    # obtain the function to fit
    if "SpeX_LXD" not in extdata.waves.keys():
        dense = False
        fixed = False
    func = fit_function(
        dattype=extdata.type,
        functype=functype,
        dense=dense,
        profile=profile,
        AV_guess=AV_guess,
        fixed=fixed,
    )

    # for dense sightlines, add more weight to the feature region
    weights = 1 / exts_unc
    if dense:
        mask_ice = (waves > 2.88) & (waves < 3.19)
        mask_tail = (waves > 3.4) & (waves < 4)
        weights[mask_ice + mask_tail] *= 2

    # use the Levenberg-Marquardt algorithm to fit the data with the model
    fit = LevMarLSQFitter()
    fit_result_lev = fit(func, waves, exts, weights=weights, maxiter=10000)

    # set up the backend to save the samples for the emcee runs
    emcee_samples_file = path + "Fitting_results/" + starpair + "_emcee_samples.h5"

    # do the fitting again, with MCMC, using the results from the first fitting as input
    fit2 = EmceeFitter(nsteps=10000, burnfrac=0.1, save_samples=emcee_samples_file)

    # add parameter bounds
    for param in fit_result_lev.param_names:
        if "amplitude" in param:
            getattr(fit_result_lev, param).bounds = (0, 2)
        elif "alpha" in param:
            getattr(fit_result_lev, param).bounds = (0, 4)
        elif "Av" in param:
            getattr(fit_result_lev, param).bounds = (0, 10)

    fit_result_mcmc = fit2(fit_result_lev, waves, exts, weights=weights)

    # create standard MCMC plots
    fit2.plot_emcee_results(
        fit_result_mcmc, filebase=path + "Fitting_results/" + starpair
    )

    # choose the fit result to save
    fit_result = fit_result_mcmc
    # fit_result = fit_result_lev
    print(fit_result)

    # determine the wavelengths at which to evaluate and save the fitted model curve: all SpeX wavelengths, sorted from short to long (to avoid problems with overlap between SXD and LXD), and shortest and longest wavelength should have data
    if "SpeX_LXD" not in extdata.waves.keys():
        full_waves = extdata.waves["SpeX_SXD"].value
        full_npts = extdata.npts["SpeX_SXD"]
    else:
        full_waves = np.concatenate(
            (extdata.waves["SpeX_SXD"].value, extdata.waves["SpeX_LXD"].value)
        )
        full_npts = np.concatenate((extdata.npts["SpeX_SXD"], extdata.npts["SpeX_LXD"]))
    # sort the wavelengths
    indxs_sort = np.argsort(full_waves)
    full_waves = full_waves[indxs_sort]
    full_npts = full_npts[indxs_sort]
    # cut the wavelength region
    indxs = np.logical_and(full_waves >= np.min(waves), full_waves <= np.max(waves))
    full_waves = full_waves[indxs]
    full_npts = full_npts[indxs]

    # calculate the residuals and put them in an array of the same length as "full_waves" for plotting
    residuals = exts - fit_result(waves)
    full_res = np.full_like(full_npts, np.nan)
    if exclude:
        mask = np.full_like(full_waves, False, dtype=bool)
        for region in exclude:
            mask += (full_waves > region[0]) & (full_waves < region[1])
        full_res[(full_npts > 0) * ~mask] = residuals

    else:
        full_res[(full_npts > 0)] = residuals

    # bootstrap to get more realistic uncertainties on the parameter results
    if bootstrap:
        red_star = StarData(extdata.red_file, path=path, use_corfac=True)
        comp_star = StarData(extdata.comp_file, path=path, use_corfac=True)
        red_V_unc = red_star.data["BAND"].get_band_mag("V")[1]
        comp_V_unc = comp_star.data["BAND"].get_band_mag("V")[1]
        unc_V = np.sqrt(red_V_unc ** 2 + comp_V_unc ** 2)
        fit_result_mcmc_low = fit2(fit_result_lev, waves, exts - unc_V, weights=weights)
        fit_result_mcmc_high = fit2(
            fit_result_lev, waves, exts + unc_V, weights=weights
        )

    # save the fitting results to the fits file
    if dense:
        functype += "_" + profile
    extdata.model["type"] = functype + "_" + extdata.type
    extdata.model["waves"] = full_waves
    extdata.model["exts"] = fit_result(full_waves)
    extdata.model["residuals"] = full_res
    extdata.model["chi2"] = np.sum((residuals / exts_unc) ** 2)
    print("Chi2", extdata.model["chi2"])
    extdata.model["params"] = []
    for param in fit_result.param_names:
        # update the uncertainties when bootstrapping
        if bootstrap:
            min_val = min(
                getattr(fit_result_mcmc, param).value,
                getattr(fit_result_mcmc_low, param).value,
                getattr(fit_result_mcmc_high, param).value,
            )
            max_val = max(
                getattr(fit_result_mcmc, param).value,
                getattr(fit_result_mcmc_low, param).value,
                getattr(fit_result_mcmc_high, param).value,
            )
            sys_unc = (max_val - min_val) / 2
            getattr(fit_result, param).unc_minus = np.sqrt(
                getattr(fit_result, param).unc_minus ** 2 + sys_unc ** 2
            )
            getattr(fit_result, param).unc_plus = np.sqrt(
                getattr(fit_result, param).unc_plus ** 2 + sys_unc ** 2
            )

        extdata.model["params"].append(getattr(fit_result, param))

        # save the column information (A(V), E(B-V) and R(V))
        if "Av" in param:
            extdata.columns["AV"] = (
                getattr(fit_result, param).value,
                getattr(fit_result, param).unc_minus,
                getattr(fit_result, param).unc_plus,
            )
            # calculate the distrubtion of R(V) and 1/R(V) from the distributions of A(V) and E(B-V)
            nsamples = getattr(fit_result, param).posterior.n_samples
            av_dist = unc.normal(
                extdata.columns["AV"][0],
                std=(extdata.columns["AV"][1] + extdata.columns["AV"][2]) / 2,
                n_samples=nsamples,
            )
            b_indx = np.abs(extdata.waves["BAND"] - 0.438 * u.micron).argmin()
            ebv_dist = unc.normal(
                extdata.exts["BAND"][b_indx],
                std=extdata.uncs["BAND"][b_indx],
                n_samples=nsamples,
            )
            ebv_per = ebv_dist.pdf_percentiles([16.0, 50.0, 84.0])
            extdata.columns["EBV"] = (
                ebv_per[1],
                ebv_per[1] - ebv_per[0],
                ebv_per[2] - ebv_per[1],
            )
            rv_dist = av_dist / ebv_dist
            rv_per = rv_dist.pdf_percentiles([16.0, 50.0, 84.0])
            extdata.columns["RV"] = (
                rv_per[1],
                rv_per[1] - rv_per[0],
                rv_per[2] - rv_per[1],
            )
            inv_rv_dist = ebv_dist / av_dist
            inv_rv_per = inv_rv_dist.pdf_percentiles([16.0, 50.0, 84.0])
            extdata.columns["IRV"] = (
                inv_rv_per[1],
                inv_rv_per[1] - inv_rv_per[0],
                inv_rv_per[2] - inv_rv_per[1],
            )
            print(extdata.columns)

    # save the fits file
    extdata.save(filename)

    # print information about the ice feature
    if fixed:
        print(
            "Ice feature strength: ",
            extdata.model["params"][3].value,
            extdata.model["params"][3].unc_minus,
            extdata.model["params"][3].unc_plus,
        )
def fit_features_ext(starpair, path):
    """
    Fit the extinction features separately with different profiles

    Parameters
    ----------
    starpair : string
        Name of the star pair for which to fit the extinction features, in the format "reddenedstarname_comparisonstarname" (no spaces)

    path : string
        Path to the data files

    Returns
    -------
    waves : np.ndarray
        Numpy array with wavelengths

    exts_sub : np.ndarray
        Numpy array with continuum subtracted extinctions

    results : list
        List with the fitted models for different profiles
    """
    # first, fit the continuum, excluding the region of the features
    fit_spex_ext(starpair, path, exclude=[(2.8, 3.6)])

    # retrieve the SpeX data to be fitted, and sort the curve from short to long wavelengths
    extdata = ExtData("%s%s_ext.fits" % (path, starpair.lower()))
    (waves, exts, exts_unc) = extdata.get_fitdata(["SpeX_SXD", "SpeX_LXD"])
    indx = np.argsort(waves)
    waves = waves[indx].value
    exts = exts[indx]
    exts_unc = exts_unc[indx]

    # subtract the fitted (powerlaw) continuum from the data, and select the relevant region
    params = extdata.model["params"]
    exts_sub = exts - (params[0] * params[3] * waves ** (-params[2]) - params[3])
    mask = (waves >= 2.8) & (waves <= 3.6)
    waves = waves[mask]
    exts_sub = exts_sub[mask]
    exts_unc = exts_unc[mask]

    # define different profiles
    # 2 Gaussians (stddev=FWHM/(2sqrt(2ln2)))
    gauss = Gaussian1D(mean=3, stddev=0.13) + Gaussian1D(mean=3.4, stddev=0.06)

    # 2 Drudes
    drude = Drude1D(x_0=3, fwhm=0.3) + Drude1D(x_0=3.4, fwhm=0.15)

    # 2 Lorentzians
    lorentz = Lorentz1D(x_0=3, fwhm=0.3) + Lorentz1D(x_0=3.4, fwhm=0.15)

    # 2 asymmetric Gaussians
    Gaussian_asym = custom_model(gauss_asymmetric)
    gauss_asym = Gaussian_asym(x_o=3, gamma_o=0.3) + Gaussian_asym(
        x_o=3.4, gamma_o=0.15
    )

    # 2 "asymmetric" Drudes
    Drude_asym = custom_model(drude_asymmetric)
    drude_asym = Drude_asym(x_o=3, gamma_o=0.3) + Drude_asym(x_o=3.4, gamma_o=0.15)

    # 2 asymmetric Lorentzians
    Lorentzian_asym = custom_model(lorentz_asymmetric)
    lorentz_asym = Lorentzian_asym(x_o=3, gamma_o=0.3) + Lorentzian_asym(
        x_o=3.4, gamma_o=0.15
    )

    profiles = [gauss, drude, lorentz, gauss_asym, drude_asym, lorentz_asym]

    # fit the different profiles
    fit = LevMarLSQFitter()
    results = []
    for profile in profiles:
        fit_result = fit(profile, waves, exts_sub, weights=1 / exts_unc, maxiter=10000)
        results.append(fit_result)
        print(fit_result)
        print("Chi2", np.sum(((exts_sub - fit_result(waves)) / exts_unc) ** 2))

    return waves, exts_sub, results
                        help="save figure as a png file",
                        action="store_true")
    parser.add_argument("--pdf",
                        help="save figure as a pdf file",
                        action="store_true")
    args = parser.parse_args()

    # get a saved extnction curve
    file = args.extfile
    # file = '/home/kgordon/Python_git/spitzer_mir_ext/fits/hd147889_hd064802_ext.fits'
    ofile = file.replace(".fits", "_P92.fits")
    extdata = ExtData(filename=file)

    # get an observed extinction curve to fit
    (wave, y, y_unc) = extdata.get_fitdata(["BAND", "IRS"],
                                           remove_uvwind_region=True,
                                           remove_lya_region=True,
                                           remove_irsblue=True)
    # ["BAND", "IUE", "IRS"], remove_uvwind_region=True, remove_lya_region=True
    # remove data affected by Ly-alpha absorption/emission
    gindxs = wave > (1.0 / 8.0) * u.micron
    wave = wave[gindxs]
    y = y[gindxs]
    y_unc = y_unc[gindxs]

    # remove units as fitting routines often cannot take numbers with units
    x = wave.to(1.0 / u.micron, equivalencies=u.spectral()).value

    # determine the initial guess at the A(V) values
    #  just use the average at wavelengths > 5
    #  limit as lambda -> inf, E(lamda-V) -> -A(V)
    (indxs, ) = np.where(1.0 / x > 5.0)
    parser.add_argument("--path", help="path for the extinction curves")
    args = parser.parse_args()

    if args.path:
        locpath = args.path + "/"
    else:
        locpath = ""

    file = args.file
    ofile = file.replace(".fits", "_POWLAW2DRUDE.fits")

    # read in the observed E(l-V) or A(l)/A(V) extinction curve
    obsext = ExtData(filename=locpath + file)

    # get an observed extinction curve to fit
    (wave, y, y_unc) = obsext.get_fitdata(["BAND", "IRS"])

    # remove units as fitting routines often cannot take numbers with units
    x = wave.to(1.0 / u.micron, equivalencies=u.spectral()).value

    if obsext.type == "elx":
        # determine the initial guess at the A(V) values
        #  just use the average at wavelengths > 5
        #  limit as lambda -> inf, E(lamda-V) -> -A(V)
        (indxs, ) = np.where(1.0 / x > 5.0)
        av_guess = -1.0 * np.average(y[indxs])
        if not np.isfinite(av_guess):
            av_guess = 1.0

        g21_init = G21() | AxAvToExv(Av=av_guess)
        g21_asym_init = G21_drude_asym() | AxAvToExv(Av=av_guess)
def table_inv_rv_dep(outpath,
                     table_waves,
                     fit_slopes,
                     fit_intercepts,
                     fit_stds,
                     norm="V"):
    """
    Create tables with the slopes, intercepts and standard deviations at wavelengths "table_waves", and the measured and fitted average extinction curve

    Parameters
    ----------
    outpath : string
        Path to save the table

    table_waves : list
        List with wavelengths to be included in the table

    fit_slopes : tuple
        The interpolated spline for the slopes

    fit_intercepts : astropy model
        The fitted model for the intercepts

    fit_stds : tuple
        The interpolated spline for the standard deviations

    norm : string [default="V"]
        Band or wavelength for the normalization

    Returns
    -------
    Tables of the R(V)-dependent relationship at wavelengths "table_waves":
        - in aaxtex format for the paper
        - in ascii format
    """
    # obtain the slopes, intercepts and standard deviations at the table wavelengths
    table_slopes = interpolate.splev(table_waves, fit_slopes)
    table_intercepts = fit_intercepts(table_waves)
    table_stds = interpolate.splev(table_waves, fit_stds)

    # obtain the measured average extinction curve
    average = ExtData(inpath + "average_ext.fits")
    (ave_waves, exts, exts_unc) = average.get_fitdata(["SpeX_SXD", "SpeX_LXD"])
    indx = np.argsort(ave_waves)
    ave_waves = ave_waves[indx].value
    exts = exts[indx]
    exts_unc = exts_unc[indx]

    # create wavelength bins and calculate the binned median extinction and uncertainty
    bin_edges = np.insert(table_waves + 0.025, 0, table_waves[0] - 0.025)
    meds, edges, indices = stats.binned_statistic(
        ave_waves,
        (exts, exts_unc),
        statistic="median",
        bins=bin_edges,
    )

    # obtain the fitted average extinction curve
    ave_fit = average.model["params"][0] * table_waves**(
        -average.model["params"][2])

    # obtain the measured average extinction in a few photometric bands
    bands = ["J", "H", "K", "WISE1", "L", "IRAC1"]
    band_waves = [1.22, 1.63, 2.19, 3.35, 3.45, 3.52]
    band_ave = get_phot(ave_waves, exts, bands)
    band_ave_unc = get_phot(ave_waves, exts_unc, bands)

    # obtain the fitted average extinction in a few photometric bands
    all_waves = np.arange(0.8, 4.05, 0.001)

    ave_fit_all = average.model["params"][0] * all_waves**(
        -average.model["params"][2])
    band_ave_fit = get_phot(all_waves, ave_fit_all, bands)

    # obtain the slopes, intercepts and standard deviations in a few photometric bands
    band_slopes = get_phot(all_waves,
                           -interpolate.splev(all_waves, fit_slopes), bands)
    band_intercepts = get_phot(all_waves, fit_intercepts(all_waves), bands)
    band_stds = get_phot(all_waves, interpolate.splev(all_waves, fit_stds),
                         bands)

    # create the table
    table = Table(
        [
            np.concatenate((band_waves, table_waves)),
            np.concatenate((band_ave, meds[0])),
            np.concatenate((band_ave_unc, meds[1])),
            np.concatenate((band_ave_fit, ave_fit)),
            np.concatenate((band_intercepts, table_intercepts)),
            np.concatenate((-band_slopes, table_slopes)),
            np.concatenate((band_stds, table_stds)),
        ],
        names=(
            "wavelength[micron]",
            "ave",
            "ave_unc",
            "ave_fit",
            "intercept",
            "slope",
            "std",
        ),
    )

    # save it in ascii format
    table.write(
        outpath + "inv_RV_dep" + str(norm) + ".txt",
        format="ascii.commented_header",
        overwrite=True,
    )

    # save it in aastex format
    table.write(
        outpath + "inv_RV_dep" + str(norm) + ".tex",
        format="aastex",
        names=(
            r"$\lambda\ [\micron]$",
            r"$\frac{A(\lambda)}{A(V)}$",
            "unc",
            "fit",
            r"$a(\lambda$)",
            r"$b(\lambda$)",
            r"$\sigma(\lambda)$",
        ),
        formats={
            r"$\lambda\ [\micron]$": "{:.2f}",
            r"$\frac{A(\lambda)}{A(V)}$": "{:.3f}",
            "unc": "{:.3f}",
            "fit": "{:.3f}",
            r"$a(\lambda$)": "{:.3f}",
            r"$b(\lambda$)": "{:.3f}",
            r"$\sigma(\lambda)$": "{:.3f}",
        },
        latexdict={
            "col_align":
            "c|ccc|ccc",
            "tabletype":
            "deluxetable",
            "caption":
            r"Average diffuse Milky Way extinction curve and parameters of the linear relationship between extinction $A(\lambda)/A(V)$ and $1/R(V)$. \label{tab:RV_dep}",
        },
        fill_values=[("nan", r"\nodata")],
        overwrite=True,
    )
def get_data(inpath, starpair_list_diff, starpair_list_dense, norm="V"):
    """
    Obtain the required data for all stars in the star pair lists:
        - A(lambda)/A(V)
        - 1/R(V)
        - A(V)

    Parameters
    ----------
    inpath : string
        Path to the input data files

    starpair_list_diffuse : list of strings
        List of diffuse star pairs to include in the fitting, in the format "reddenedstarname_comparisonstarname" (no spaces)

    starpair_list_dense : list of strings
        List of dense star pairs to include in the fitting, in the format "reddenedstarname_comparisonstarname" (no spaces)

    norm : string [default="V"]
        Band or wavelength for the normalization

    Returns
    -------
    1/R(V) with uncertainties, A(V) with uncertainties, A(lambda)/A(V) with uncertainties, wavelengths, boolean for dense/diffuse
    """
    starpair_list = starpair_list_diff + starpair_list_dense
    inv_RVs = np.zeros((len(starpair_list), 3))
    AVs = np.zeros((len(starpair_list), 3))

    # determine the wavelengths at which to retrieve the extinction data
    extdata_model = ExtData("%s%s_ext.fits" %
                            (inpath, starpair_list[0].lower()))
    waves = np.sort(
        np.concatenate((
            extdata_model.waves["SpeX_SXD"].value,
            extdata_model.waves["SpeX_LXD"].value,
        )))
    alavs = np.full((len(waves), len(starpair_list)), np.nan)
    alav_uncs = np.full((len(waves), len(starpair_list)), np.nan)
    dense_bool = np.full(len(starpair_list), False)

    # retrieve the information for all stars
    for i, starpair in enumerate(starpair_list):
        # retrieve 1/R(V) and A(V) (with uncertainties)
        extdata = ExtData("%s%s_ext.fits" % (inpath, starpair.lower()))
        inv_RVs[i] = np.array(extdata.columns["IRV"])
        AVs[i] = np.array(extdata.columns["AV"])

        # transform the curve from E(lambda-V) to A(lambda)/A(V)
        extdata.trans_elv_alav()

        # get the good data in flat arrays
        (flat_waves, flat_exts,
         flat_exts_unc) = extdata.get_fitdata(["SpeX_SXD", "SpeX_LXD"])

        # convert extinction from A(lambda)/A(V) to A(lambda)/A(norm) if norm is not "V"
        if norm != "V":
            ind1 = np.abs(flat_waves.value - norm).argmin()
            flat_exts = flat_exts / flat_exts[ind1]
            flat_exts_unc = flat_exts_unc / flat_exts[ind1]

        # retrieve A(lambda)/A(V) at all wavelengths
        for j, wave in enumerate(waves):
            if wave in flat_waves.value:
                alavs[j][i] = flat_exts[flat_waves.value == wave]
                alav_uncs[j][i] = flat_exts_unc[flat_waves.value == wave]

        # flag the dense sightlines
        if starpair in dense:
            dense_bool[i] = True

    return inv_RVs, AVs, alavs, alav_uncs, waves, dense_bool
Example #9
0
                        help="save figure as a pdf file",
                        action="store_true")
    args = parser.parse_args()

    # get a saved extnction curve
    file = args.extfile
    # file = '/home/kgordon/Python_git/spitzer_mir_ext/fits/hd147889_hd064802_ext.fits'
    ofile = file.replace(".fits", "_FM90.fits")
    ext = ExtData(filename=file)

    if ext.type == "elx":
        ext.trans_elv_alav(av=float(ext.columns["AV"][0]))

    wave, y, y_unc = ext.get_fitdata(
        ["IUE"],
        remove_uvwind_region=True,
        remove_lya_region=True,
    )
    x = 1.0 / wave.value

    # remove points above x = 8.0
    gvals = x < 8.0
    x = x[gvals]
    y = y[gvals]
    y_unc = y_unc[gvals]

    # initialize the model
    fm90_init = FM90()

    fm90_init.C1.bounds = (-2.0, 3.0)
    fm90_init.C2.bounds = (-0.1, 1.0)
Example #10
0
def plot_multi_extinction(
    starpair_list,
    path,
    alax=False,
    average=False,
    extmodels=False,
    fitmodel=False,
    HI_lines=False,
    range=None,
    spread=False,
    exclude=[],
    log=False,
    text_offsets=[],
    text_angles=[],
    pdf=False,
):
    """
    Plot the extinction curves of multiple stars in the same plot

    Parameters
    ----------
    starpair_list : list of strings
        List of star pairs for which to plot the extinction curve, in the format "reddenedstarname_comparisonstarname" (no spaces)

    path : string
        Path to the data files

    alax : boolean [default=False]
        Whether or not to plot A(lambda)/A(X) instead of E(lambda-X)

    average : boolean [default=False]
        Whether or not to plot the average extinction curve

    extmodels: boolean [default=False]
        Whether or not to overplot Milky Way extinction curve models

    fitmodel: boolean [default=False]
        Whether or not to overplot a fitted model

    HI_lines : boolean [default=False]
        Whether or not to indicate the HI-lines in the plot

    range : list of 2 floats [default=None]
        Wavelength range to be plotted (in micron) - [min,max]

    spread : boolean [default=False]
        Whether or not to spread the extinction curves out by adding a vertical offset to each curve

    exclude : list of strings [default=[]]
        List of data type(s) to exclude from the plot (e.g., IRS)

    log : boolean [default=False]
        Whether or not to plot the wavelengths on a log-scale

    text_offsets : list of floats [default=[]]
        List of the same length as starpair_list with offsets for the annotated text

    text_angles : list of integers [default=[]]
        List of the same length as starpair_list with rotation angles for the annotated text

    pdf : boolean [default=False]
        Whether or not to save the figure as a pdf file

    Returns
    -------
    Figure with extinction curves of multiple stars
    """
    # plotting setup for easier to read plots
    fontsize = 18
    font = {"size": fontsize}
    plt.rc("font", **font)
    plt.rc("lines", linewidth=1)
    plt.rc("axes", linewidth=2)
    plt.rc("xtick.major", width=2, size=10)
    plt.rc("xtick.minor", width=1, size=5)
    plt.rc("ytick.major", width=2, size=10)
    plt.rc("ytick.minor", width=1, size=5)
    plt.rc("axes.formatter", min_exponent=2)

    # create the plot
    fig, ax = plt.subplots(figsize=(15, len(starpair_list) * 1.25))
    colors = plt.get_cmap("tab10")

    # set default text offsets and angles
    if text_offsets == []:
        text_offsets = np.full(len(starpair_list), 0.2)
    if text_angles == []:
        text_angles = np.full(len(starpair_list), 10)

    for i, starpair in enumerate(starpair_list):
        # read in the extinction curve data
        extdata = ExtData("%s%s_ext.fits" % (path, starpair.lower()))

        # spread out the curves if requested
        if spread:
            yoffset = 0.25 * i
        else:
            yoffset = 0.0

        # determine where to add the name of the star
        # find the shortest plotted wavelength
        (waves, exts,
         ext_uncs) = extdata.get_fitdata(extdata.waves.keys() - exclude)
        if range is not None:
            waves = waves[waves.value >= range[0]]
        min_wave = waves[-1]
        # find out which data type corresponds with this wavelength
        for data_type in extdata.waves.keys():
            if data_type in exclude:
                continue
            used_waves = extdata.waves[data_type][extdata.npts[data_type] > 0]
            if min_wave in used_waves:
                ann_key = data_type
        ann_range = [min_wave, min_wave] * u.micron

        # plot the extinction curve
        extdata.plot(
            ax,
            color=colors(i % 10),
            alpha=0.7,
            alax=alax,
            exclude=exclude,
            yoffset=yoffset,
            annotate_key=ann_key,
            annotate_wave_range=ann_range,
            annotate_text=extdata.red_file.split(".")[0].upper(),
            annotate_yoffset=text_offsets[i],
            annotate_rotation=text_angles[i],
            annotate_color=colors(i % 10),
        )

        # overplot a fitted model if requested
        if fitmodel:
            plot_fitmodel(extdata, yoffset=yoffset)

    # overplot Milky Way extinction curve models if requested
    if extmodels:
        if alax:
            plot_extmodels(extdata, alax)
        else:
            warnings.warn(
                "Overplotting Milky Way extinction curve models on a figure with multiple observed extinction curves in E(lambda-V) units is disabled, because the model curves in these units are different for every star, and would overload the plot. Please, do one of the following if you want to overplot Milky Way extinction curve models: 1) Use the flag --alax to plot ALL curves in A(lambda)/A(V) units, OR 2) Plot all curves separately by removing the flag --onefig.",
                stacklevel=2,
            )

    # plot the average extinction curve if requested
    if average:
        plot_average(
            path,
            ax=ax,
            extmodels=extmodels,
            fitmodel=fitmodel,
            exclude=exclude,
            spread=spread,
            annotate_key=ann_key,
            annotate_wave_range=ann_range,
        )

    # define the output name
    outname = "all_ext_%s.pdf" % (extdata.type)

    # plot HI-lines if requested
    if HI_lines:
        plot_HI(path, ax)

    # zoom in on a specific region if requested
    if range is not None:
        zoom(ax, range)
        outname = outname.replace(".pdf", "_zoom.pdf")

    # finish configuring the plot
    if log:
        ax.set_xscale("log")
    ax.set_xlabel(r"$\lambda$ [$\mu m$]", fontsize=1.5 * fontsize)
    ylabel = extdata._get_ext_ytitle(ytype=extdata.type)
    if spread:
        ylabel += " + offset"
    ax.set_ylabel(ylabel, fontsize=1.5 * fontsize)

    # show the figure or save it to a pdf file
    if pdf:
        fig.savefig(path + outname, bbox_inches="tight")
    else:
        plt.show()

    # return the figure and axes for additional manipulations
    return fig, ax
Example #11
0
    plt.rc("axes", linewidth=2)
    plt.rc("xtick.major", width=2)
    plt.rc("xtick.minor", width=2)
    plt.rc("ytick.major", width=2)
    plt.rc("ytick.minor", width=2)

    fig, tax = plt.subplots(
        ncols=2, nrows=2, figsize=(14, 6), gridspec_kw={"height_ratios": [3, 1]}
    )

    # filename = "hd029647_hd034759_ext.fits"
    # filename = "hd029647_hd042560_ext.fits"
    filename = "hd283809_hd003360_ext.fits"
    ext = ExtData(filename)

    (wave, y, y_unc) = ext.get_fitdata(["SpeX_SXD", "SpeX_LXD"])
    # remove units as fitting routines often cannot take numbers with units
    x = wave.to(u.micron).value
    gvals = (0.6 < x) & (x < 6.0)
    # print(y_unc[gvals])
    # gvals = np.logical_or(x < 3.18, x > 3.4)
    weights = 1.0 / (y_unc[gvals])
    # weights = np.full((len(x)), 0.1)
    # weight ice feature
    # weights[(2.9 < x) & (x < 3.2)] *= 5
    # weights[(3.2 < x) & (x < 3.4)] /= 5
    # weights[(2.3 < x) & (x < 2.4)] *= 5
    # weights[(3.35 < x) & (x < 3.45)] *= 5

    ax = tax[0, 0]
    ext.plot(ax)