def compute_feature(scans):
    num_raw_scans = len(scans)
    feature_scans = []
    angle, dist = scans[0][0], scans[0][1]
    num = 1.0
    for i in range(1, num_raw_scans):
        if scans[i][0] == scans[i - 1][0] + 1 and abs(scans[i][1] -
                                                      scans[i - 1][1]) < 1.0:
            angle += scans[i][0]
            dist += scans[i][1]
            num += 1.0
        else:
            # if not the case, previous recording list up to one feature. calc mid
            feature_scans += [[
                dist / num,
                normalize_angle(radians(angle / (2 * num)) - np.pi / 2)
            ]]
            # reset counters
            angle = scans[i][0]
            dist = scans[i][1]
            num = 1.0
    feature_scans += [[
        dist / num,
        normalize_angle(radians(angle / (2 * num)) - np.pi / 2)
    ]]
    return np.asarray(feature_scans)
def vic_f(current_state, u_t, Q, args=None, do_noise=True):
    x, y, theta = current_state[0], current_state[1], current_state[2]
    vel = u_t[0]
    alpha = u_t[1]
    a = args[1]
    delta_t = args[0]
    b = args[2]
    L = args[3]
    H = args[4]

    res = np.asarray([
        x + delta_t * (v * cos(theta)) - (vel / L) * tan(theta) *
        (a * sin(theta) + b * cos(theta)), y + delta_t * (v * sin(theta)) +
        (vel / L) * tan(theta) * (a * cos(theta) - b * sin(theta)),
        normalize_angle(theta + delta_t * (vel / L) * tan(alpha))
    ]).T[0]

    # if norm(res[:2] - current_state[:2]) > 10.00:
    # 	print("Current u :" , u_t)
    # 	print("Current state: ", current_state)
    # 	print(res)
    # 	raise Exception

    if do_noise:
        noise = np.random.normal(0, Q.diagonal(), 3)
        res += noise

    current_state[:3] = res
    return current_state
Example #3
0
	def update(self, z, ind):
		# check if landmark was never seen before
		position_of_landmark_in_state_vector = 2 * ind + self.dim_state_without_landmarks

		if self.state[position_of_landmark_in_state_vector] == 0.0 and self.state[
			position_of_landmark_in_state_vector + 1] == 0.0:
			# remember landmark
			self.state[position_of_landmark_in_state_vector] = self.state[0] + z[0] * cos(
				z[1] + self.state[2])
			self.state[position_of_landmark_in_state_vector + 1] = self.state[1] + z[0] * sin(
				z[1] + self.state[2])

		# compute delta - the estimated position of the landmark
		delta = np.asarray([0.0, 0.0])
		delta[0] = self.state[position_of_landmark_in_state_vector] - self.state[0]
		delta[1] = self.state[position_of_landmark_in_state_vector + 1] - self.state[1]
		# compute q
		q = np.matmul(np.transpose(delta), delta)
		# compute z_dash
		z_dash = np.array([sqrt(q), normalize_angle(atan2(delta[1], delta[0]) - self.state[2])])

		# define F_x_i
		F_x_i = np.zeros((self.dim_state_without_landmarks + self.dim_z, self.dim_state))
		for kk in range(self.dim_state_without_landmarks):
			F_x_i[kk, kk] = 1.0
		for kk in range(self.dim_z):
			F_x_i[self.dim_state_without_landmarks + kk, self.dim_state_without_landmarks + 2 * ind + kk] = 1

		# get matrix H
		H_i = np.array([[-sqrt(q) * delta[0], -sqrt(q) * delta[1], 0.0, sqrt(q) * delta[0], sqrt(q) * delta[1]],
						[delta[1], -delta[0], -q, -delta[1], delta[0]]], dtype=np.double)

		H_i = (1 / q) * np.matmul(H_i, F_x_i)

		# compute innovation
		S_k = np.add(np.matmul(np.matmul(H_i, self.sigma), np.transpose(H_i)), self.R)

		# compute Kalman gain
		K_k = np.matmul(np.matmul(self.sigma, np.transpose(H_i)), inv(S_k))

		# compute difference between measurement and estimated measurement
		diff = z - z_dash
		diff[1] = normalize_angle(diff[1])
		y_k = np.transpose(np.asmatrix(diff))

		self.state = np.add(self.state, np.asarray(np.dot(K_k, y_k).T.tolist()[0]))
		self.sigma = np.matmul(np.subtract(np.eye(self.dim_state), np.matmul(K_k, H_i)), self.sigma)
def compute_measurements(laser_scanner, thresh=25):
    dist, angl, num = [], [], 0.0
    features = []
    for k in range(len(laser_scanner)):
        if laser_scanner[k] < 8000:
            c_l = float(laser_scanner[k])
            if len(dist) == 0 or abs(c_l - dist[-1]) < thresh:
                dist += [c_l]
                angl += [normalize_angle(radians(k / 2) - np.pi / 2)]
                num += 1
            else:
                features += [[sum(dist) / num, mean_angles(angl)]]
                dist, angl, num = [c_l], [
                    normalize_angle(radians(k / 2) - np.pi / 2)
                ], 1.0
    features += [[sum(dist) / num, mean_angles(angl)]]
    return features
Example #5
0
def h(state, m_i):
	"""
	The measurement function, translating the current state of the robot/filter into measurement space
	:param state: The current state
	:param m_i: The position of the landmark corresponding to the measurement
	:return: The expected (r,b) measurement
	"""
	l_x, l_y = m_i[0], m_i[1]
	x, y, heading = state[0], state[1], state[2]
	angle = normalize_angle(atan2((l_y - y), (l_x - x)) - heading)
	return np.array([sqrt((l_x - x) ** 2 + (l_y - y) ** 2), angle])
Example #6
0
def calc_weight(x, mean, cov):
    """
	Calculate the density for a multinormal distribution

	Taken from: https://github.com/nwang57/FastSLAM
	Thanks!
	"""
    # return scipy_multi.pdf(x, mean=mean, cov=cov)
    den = 2 * np.pi * sqrt(det(cov))
    diff = x - mean
    diff[1] = normalize_angle(diff[1])
    num = np.exp(-0.5 * dot3(diff.T, inv(cov), diff))
    result = num / den
    return result
Example #7
0
    def update(self, z, h, h_args=()):
        x_h = np.asarray([h(member, h_args) for member in self.ensemble])
        x_dash = np.mean(self.ensemble, axis=0)
        y_dash = np.mean(x_h, axis=0)

        y_diff = x_h - y_dash
        for i in range(len(y_diff)):
            y_diff[i][1] = normalize_angle(y_diff[i][1])

        X = (1.0 / sqrt(self.N - 1)) * (self.ensemble - x_dash).T
        Y = (1.0 / sqrt(self.N - 1)) * y_diff.T

        D = np.dot(Y, Y.T) + self.R
        K = np.dot(X, Y.T)
        K = np.dot(K, inv(D))

        v_r = np.random.multivariate_normal([0] * self.dim_z, self.R, self.N)
        for j in range(self.N):
            diff = z + v_r[j] - x_h[j]
            diff[1] = normalize_angle(diff[1])
            self.ensemble[j] += np.dot(K, diff)

        self.state = np.mean(self.ensemble, axis=0)
Example #8
0
def calc_diff(entries, mean, index_of_angles):
    diff = entries - mean
    for i in range(len(diff)):
        diff[i, index_of_angles] = normalize_angle(diff[i, index_of_angles])
    return diff
Example #9
0
def calc_mean(entries, index_of_angles):
    new_mean = np.mean(entries, axis=0)
    new_mean[index_of_angles] = normalize_angle(
        mean_angles(entries[:, index_of_angles]))
    return new_mean
Example #10
0
def generate_simulation(num_landmarks,
                        x_min,
                        x_max,
                        orig_state,
                        threshold,
                        number_of_steps,
                        f,
                        Q,
                        R,
                        step_size=3,
                        go_straight=False,
                        do_test=False,
                        additional_args=(1, 1),
                        dim_state=3,
                        do_circle=False,
                        asso_test=False):
    """
	Generates the data needed for the simulation: The true robots path, the controls needed and the noisy measurements needed.
	:param dim_state: The size of the state vector
	:param num_landmarks: The number of landmarks in the world
	:param x_min: Min. value in Euclidean plane
	:param x_max: Max. value in Euclidean plane
	:param orig_state: The starting position
	:param threshold: The maximum range in which to record measurements
	:param number_of_steps: The number of steps to be run in the simulation
	:param f: The state transition function, i.e. the movement model
	:param Q: The state transition covariance
	:param R: The measurement covariance
	:param step_size: The size of the steps taking a each time step t
	:param go_straight: Boolean indicating whether to go straight or take turns
	:param do_test: If true, simply place four landmarks in the world. Only for testing
	:param additional_args: Additional arguments. Must at least include arguments for the state transition function (w,delta_t)
	:return: A 5-tuple, containing:
		- The total size of the world
		- The now placed number of landmarks
		- A list of the landmarks
		- A list of the true positions of the robot in the simulation
		- A list of all the measurements recorded at each time step
		- A list of all the controls fed to the robot at each time step
	"""
    w, delta_t = additional_args[:2]

    world_size = abs(x_min) + abs(x_max)
    landmarks = [[
        randint(x_min + 5, x_max - 5),
        randint(x_min + 5, x_max - 5)
    ] for _ in range(num_landmarks)]

    measurements_at_i = [None]
    u_at_i = [None]

    if do_test:
        landmarks = [[25, 25], [25, 75], [75, 25], [75, 75]]
        num_landmarks = len(landmarks)

    test_state = np.array([0.0 for _ in range(dim_state)]).T

    if orig_state is not None:
        test_state = deepcopy(orig_state)
    else:
        test_state[0] = (x_max - abs(x_min)) / 2
        test_state[1] = (x_max - abs(x_min)) / 2

    if do_circle:
        test_state[0] = -97.5
        test_state[1] = -5
        test_state[2] = .5 * np.pi
    if asso_test:
        test_state[0] = x_min + 5
        test_state[1] = x_max / 2
        test_state[2] = 0.0

        landmarks = [[i, 25] for i in range(x_min + 5, x_max - 5, 20)
                     ] + [[i, 75] for i in range(x_min + 5, x_max - 5, 20)]
        num_landmarks = len(landmarks)

    position_at_i = [test_state]

    current_circle_u = -0.01

    for _ in range(number_of_steps):

        if not go_straight:
            # test_u = np.array([step_size, choice([0.0, -.05, -.1, -.15, .05, .1, .15])])
            test_u = np.array(
                [step_size,
                 choice([0.0, -.05, -.1, .05, .1, -.025, .025])])
        else:
            test_u = np.array([step_size, 0.0])

        if do_circle:
            test_u = np.array([step_size, current_circle_u])
            current_circle_u -= 0.00001

        # check if we run into a wall
        test_u = move(test_state, test_u, x_min, x_max, f, Q, (w, delta_t))

        # do real movement - therefore no noise!
        test_state = f(test_state, test_u, Q, (w, delta_t), do_noise=False)
        test_state[2] = normalize_angle(test_state[2])

        # store current position
        position_at_i += [test_state]
        # store correct control
        u_at_i += [test_u]
        # store measurements received at i
        if do_test:
            z = get_range_bearing_measurements(test_state,
                                               landmarks,
                                               R,
                                               do_noise=True,
                                               threshold=None)
        else:
            z = get_range_bearing_measurements(test_state,
                                               landmarks,
                                               R,
                                               do_noise=True,
                                               threshold=threshold)
        measurements_at_i += [z]

    return world_size, num_landmarks, landmarks, position_at_i, measurements_at_i, u_at_i
Example #11
0
	def slam_update(self, z, ind, h, H_wrt_l, h_inv):
		"""
		Here we are following the approach in the above mentioned thesis - therefore we are performing everything
			in one run - no need to split to two methods.

		If you are looking at this and are wondering, I strongly recommend to check out the above mentioned thesis,
			specifically p.85
		:param z: The current measurement
		:param ind: The index of the according landmark
		:param h: Measurement function
		:param H_wrt_l: Jacobian of measurement function w.r.t. the landmark
		:param h_inv: The inverse of the measurement function
		"""
		# First thing: Loop over all particles:
		for i in range(self.N):

			par = self.particles[i]

			index_in_particle = 2 + ind * 2
			# This is with known associations, wherefore we skip the loop over all potential data associations

			# Compute prediction s_dash using the state transition function f
			s_dash = par[0]

			# first, check if the landmark was previously undiscovered:
			if par[index_in_particle] is None and par[index_in_particle + 1] is None:
				# Landmark not yet discovered. Add it
				# Then, compute the landmark position and sigma
				l_mean = h_inv(par[0], z)

				par[index_in_particle] = l_mean
				par[index_in_particle + 1] = np.eye(2) * self.new_cov_infl

				self.weights[i] = self.p_0

			else:

				# Get Jacobian
				H_wrt_l_mat = H_wrt_l(s_dash, par[index_in_particle])

				# Compute the expected measurement z_dash using the measurement function h
				z_dash = h(s_dash, par[index_in_particle])
				# Compute the difference and normalize!
				z_diff = z - z_dash
				z_diff[1] = normalize_angle(z_diff[1])

				l_sigma = par[index_in_particle + 1]

				# Compute Z_t
				Z_t = self.R + dot3(H_wrt_l_mat, l_sigma, H_wrt_l_mat.T)
				# print(H_wrt_l_mat)

				# update the landmark prediction accordingly
				l_mean = par[index_in_particle]

				# compute Kalman gain
				K = dot3(l_sigma, H_wrt_l_mat.T, inv(Z_t))

				# compute new mean
				par[index_in_particle] = l_mean + np.dot(K, z_diff)
				# compute new sigma
				par[index_in_particle + 1] = np.dot((np.eye(2) - np.dot(K, H_wrt_l_mat)), l_sigma)

				# compute new particle weight
				# if self.weights[i] * (calc_weight(z, z_dash, Z_t) + 1.e-300) == 0.0:
				# 	print("PRE-ALERT: %d" % i)
				# 	print("Particle %d Pos: %f,%f - Landmark Estimate: %f,%f - Weight: %f" % (i, par[0][0], par[0][1], par[index_in_particle][0], par[index_in_particle][1], self.weights[i]))
				# 	print(self.weights[i])
				# 	print((calc_weight(z, z_dash, Z_t) + 1.e-300))
				# 	print("....")
				# if self.weights[i] == 0.0:
				# 	print("ALERT")
				self.weights[i] *= calc_weight(z, z_dash, Z_t)
				# print("[%d] Diff is: [%f,%f] - Prob is: %f" % (i, z_diff[0], z_diff[1], calc_weight(z, z_dash, Z_t)))
				# print("Particle %d Pos: %f,%f - Landmark Estimate: %f,%f - Weight: %f" % (i, par[0][0], par[0][1], par[index_in_particle][0],par[index_in_particle][1], self.weights[i]))
				# print(z, z_dash)
		# if sum(self.weights) < 1.0:
		# 	self.normalize_weights()
		self.normalize_weights()
Example #12
0
	def update(self, z, h, ind, h_args=(), full_ensemble=False):
		"""
		Update the current prediction using incoming measurements
		:param full_ensemble:
		:param z: The incoming measurement
		:param h: The measurement function
		:param ind: The index of the landmark according to the measurement
		:param h_args: Additional arguments for the state transition function
		"""
		# according to roth_2017, we do not need a batch update, but can iterate over the updates individually.

		# check if landmark was never seen before
		position_of_landmark_in_state_vector = 2 * ind + self.state_without_landmarks

		new_landmark = abs(self.state[position_of_landmark_in_state_vector]) < self.eps \
							and abs(self.state[position_of_landmark_in_state_vector + 1]) < self.eps

		if new_landmark:
			# remember landmark - IN EACH MEMBER!
			for i in range(self.N):

				self.ensemble[i, position_of_landmark_in_state_vector:position_of_landmark_in_state_vector + self.dim_landmarks] \
					= get_coordinate_from_range_bearing(z, self.ensemble[i])

		if full_ensemble:
			tmp_ensemble = self.ensemble
			col_indx = [col_ind for col_ind in range(self.dim_state)]
		else:
			# lets try something: select only robot state and landmark state and form new tmp state
			# row_indx -> ensemble member, col_indx -> value in ensemble member
			col_indx = np.array([v for v in range(self.state_without_landmarks)] + [b for b in range(
				position_of_landmark_in_state_vector, position_of_landmark_in_state_vector + self.dim_landmarks)])

			tmp_ensemble = self.ensemble[:, col_indx]
		tap_N = len(tmp_ensemble)

		# Use this function for using correct landmark
		# x_h = np.asarray([h(member, h_args) for member in tmp_ensemble])
		if full_ensemble:
			x_h = np.asarray([h(member, self.get_ith_landmark_from_member(member, ind)) for member in tmp_ensemble])
		else:
			x_h = np.asarray([h(member, self.get_ith_landmark_from_member(member, 0)) for member in tmp_ensemble])

		# Angles can not be "meaned" like normal values!
		# Therefore: Use own mean function

		# Calculate the mean of the chosen ensemble
		x_dash = calc_mean(tmp_ensemble, 2)
		# Calculate the expected measurement for each ensemble member
		y_dash = calc_mean(x_h, 1)

		# Tang_2015 argue, that the following has to hold: y_dash == h(np.mean(tmp_ensemble, axis=0), h_args)

		# This is the normal calculation
		X = (1.0 / sqrt(tap_N - 1)) * (calc_diff(tmp_ensemble, x_dash, 2)).T
		Y = (1.0 / sqrt(tap_N - 1)) * (calc_diff(x_h, y_dash, 1)).T

		# Follow simple calculation for computation of Kalman gain
		D = np.dot(Y, Y.T) + self.R
		K = np.dot(X, Y.T)
		K = np.dot(K, inv(D))

		v_r = np.random.multivariate_normal([0] * self.dim_z, self.R, self.N)

		for j in range(self.N):
			# self.ensemble[j, col_indx] += np.dot(K, z + v_r[j] - x_h[j])
			diff = z - x_h[j] + v_r[j]
			diff[1] = normalize_angle(diff[1])
			update = np.dot(K, diff)

			self.ensemble[j, col_indx] += update

		self.normalize_ensemble_angles()
		self.state = calc_mean(self.ensemble, 2)
Example #13
0
def f(state, u, Q, args, do_noise=False, dim_robot_state=3):
	"""
	The underlying state transition model for our robot.

	It is very well explained in: https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/blob/master/10-Unscented-Kalman-Filter.ipynb

	:param dim_robot_state: The dimension of the robot state. Defaults to | [x,y,heading] | = 3
	:param state: The current state
	:param u: The control input u = (v,alpha)
	:param Q: The state transition covariance matrix
	:param args: Additional arguments, carry at least the robots width and the time difference delta_t
	:param do_noise: Boolean indicating whether to add noise or to do true movement
	:return: The new state
	"""
	##############################################################################################

	if len(state) < 3:
		raise ValueError("Current State is not large enough, should at least contain [x,y,heading]")
	if len(args) < 2:
		raise ValueError("The robot width and the time step must be specified in args!")
	if len(u) != 2:
		raise ValueError("Please specify u = (v, alpha)")

	##############################################################################################

	# Get the robots width
	w = args[0]
	# Get the time change
	delta_t = args[1]
	# Compute the distance travelled based on velocity and time based
	if do_noise and len(Q) == len(u):
		noise = np.random.normal(0, Q.diagonal(), len(u))
		velocity = u[0] + noise[0]
		alpha = u[1] + noise[1]
	else:
		velocity = u[0]
		alpha = u[1]
	d = velocity * delta_t
	# Compute the additional turning for the heading
	beta = (d / w) * tan(alpha)
	theta = state[2]
	new_state = np.transpose(np.asarray(np.array([0.0 for _ in range(len(state))])))

	if abs(u[1]) > 0.001:
		R = d / beta
		angle_sum = normalize_angle(theta + beta)
		arg = np.array(	[-R * sin(theta) + R * sin(angle_sum),
						R * cos(theta) - R * cos(angle_sum),
						beta])
	else:
		arg = np.array([d * cos(theta),
						d * sin(theta),
						0])
	if do_noise and len(Q) == dim_robot_state:
		noise = np.random.normal(0, Q.diagonal(), dim_robot_state)
		arg += noise
	for i in range(len(arg)):
		new_state[i] = arg[i]
	new_state[2] = normalize_angle(arg[2])
	res = np.add(state, new_state)
	return res
Example #14
0
    def normalize_ensemble_angles(self):
        """
		Normalize an angle to be within [-pi, pi)
		"""
        for i in range(self.N):
            self.ensemble[i, 2] = normalize_angle(self.ensemble[i, 2])
len_drive_information = len(drive['time'])

L, b, a, H_vic = 2.83, 0.5, 3.78, 0.76

current_laser_index = 0

ens_prediction = [EnsKFSlam_UA.state]

# iterate over driving information
for i in range(len_drive_information):

    if i % 250 == 0:
        print("--> Doing step %d" % i)

    v = vel[i]
    alpha = normalize_angle(steering[i])
    u_t = [v, alpha]

    timestamp = driving_time_stamps[i]

    # dirty hack!
    if i > 0:
        # Divide by thounds - the timestamp is in milliseconds
        # and the velocity is in m/sec
        delta_t = abs(timestamp - driving_time_stamps[i - 1]) / 1000
    else:
        continue

    # print("Pre-predict: ", EnsKFSlam_UA.state)
    EnsKFSlam_UA.predict(vic_f,
                         u_t,